Torrefaction of Oil Palm Frond Petiole: Effect of Particle Sizes, Sections and Batches

Authors

  • Muhammad Ariff Hanaffi Mohd Fuad School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia.
  • Eljoji J. A. Loijon School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Faizal Hasan Automotive Development Centre (ADC), Institute for Vehicle System and Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • Mohd Rosdzimin Abdul Rahman Department of Mechanical Engineering, Faculty of Engineering, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • Bemgba B. Nyakuma School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shaharil Mad Saad School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

DOI:

https://doi.org/10.11113/jest.v4n1.77

Keywords:

Torrefaction, oil palm frond, petiole, particle size, batch

Abstract

This study aimed to investigate the effect of batches (1, 2 and 3), particle sizes (<250 µm, range of 300 µm to 500 µm), and sections (bottom, middle and top) on combustion performance of the oil palm frond (OPF) petiole after torrefaction at 275 °C. The higher heating value (HHV), mass yield, energy yield, HHV yield and proximate analyses of the untorrefied and torrefied OPF petiole for all cases were determined.  The comparison between the untorrefied and torrefied OPF petiole as well as an international benchmark was also performed. In this study, the highest HHV of the torrefied OPF petiole (22.85±0.07MJ/kg) was obtained at the bottom section with the particle size of < 250 µm.  Furthermore, the fixed carbon content of the torrefied OPF petiole increased, whereas the volatile matter, moisture content, mass and energy yields decreased for all cases after torrefaction.  HHV yield of OPF petiole was recorded up to 141% after torrefaction.  The ash content was sufficiently satisfied the international benchmark for most cases, except for top section (300-500µm).  The changes in combustion properties of the torrefied OPF petiole for all cases were found to be insignificant whereas significant improvement could be observed when compared to untorrefied OPF petiole.  Overall, the study revealed that the appropriate particle size for torrefaction can promote it to be a vital source for energy production from oil palm biomass.

References

Loh, S. K.. 2017. The Potential of the Malaysian Oil Palm Biomass as a Renewable Energy Source. Energy Convers. Manag., 141: 285–298.

Malaysian Palm Oil Board (MPOB), 2016, Malaysian Oil Palm Statistics 2016, MPOB, ministry of plantation industries and commodities.

Sukiran, M. A., Abnisa, F., Wan Daud, W. M. A., Abu Bakar, N., and Loh, S. K. 2017. A Review of Torrefaction of Oil Palm Solid Wastes for Biofuel Production. Energy Convers. Manag. 149:101–120.

N.N. Omar, N. Abdullah, I. S. M. and F. S. 2019. Characterisation of Oil Palm Frond for Bio-Oil Production. ASM Science Journal 11(1): 9–22.

Wahid, F. R. A. A., Harun, N. H. H. M., Rashid, S. R. M., Samad, N., and Saleh, S. 2017. Physicochemical Property Changes and Volatile Analysis for Torrefaction of Oil Palm Frond. Chemical Engineering Transactions. 56:199–204.

Thaim, T., Rasid, R. A., and Ismail, W. M. S. W. 2019. Torrefaction of Oil Palm Fronds (OPF) as a Potential Feedstock for Energy Production Processes. Journal of Environmental Engineering and Landscape Management. 27(2): 64–71.

Matali, S., Rahman, N. A., Idris, S. S., Yaacob, N., and Alias, A. B. 2016. Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction. Procedia Engineering, Elsevier, 671–678.

Yaacob, N., Rahman, N. A., Matali, S., and Idris, S. S. 2017. Torrefaction of Oil Palm Frond: Effects of Torrefaction Temperature and Holding Time. AIP Conference Proceedings, AIP Publishing, 100003.

Sukiran, M. A., Abnisa, F., Daud, W., Bakar, N. A., Aziz, A. A., and Loh, S. K. 2019. Upgrading of Oil Palm Biomass by Torrefaction Process: A Preliminary Study. AIP Conference Proceedings, AIP Publishing, 20059.

Arce, M. E., Saavedra, Á., Míguez, J. L., Granada, E., and Cacabelos, A. 2013. Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor. Energies. 6(11): 5973–5989.

Chen, D., Yang, Q., Jiang, X., Lv, G., Ma, Z., Yan, J., Cen, K., Yu, X., Liao, H., and Zhao, H. 2016. Comparison of Combustion and Emission Characteristics of an Indonesian Lignite Washery Tailing Slurry with a Bituminous Coal in a Bench-Scale Bubbling/Circulating Fluidized Bed Combustor. Energy & Fuels. 30(12): 10835–10846.

Sulaiman, S. A., and Anas, M. I. 2012. Torrefaction of Oil Palm Fronds for Enhancement of Fuel Quality. Trends in Applied Sciences Research 7:248–255.

Wahid, F. R. A. A., Saleh, S., and Samad, N. A. F. A. 2017. Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis. Energy Procedia. 138: 307–312.

Susanty, W., and Helwani, Z. 2018. Torrefaction of Oil Palm Frond: The Effect of Process Condition to Calorific Value and Proximate Analysis. IOP Conference Series: Materials Science and Engineering, IOP Publishing. 12016.

Uemura, Y., Omar, W. N., Tsutsui, T., and Yusup, S. B. 2011. Torrefaction of Oil Palm Wastes. Fuel. 90(8): 2585–2591.

Sulaiman, M. H., Uemura, Y., and Azizan, M. T. 2016. Torrefaction of Empty Fruit Bunches in Inert Condition at Various Temperature and Time. Procedia Engineering. 148:573–579.

Chen, W.-H., and Kuo, P.-C. 2011. Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy. 36(2):803–811.

Faizal, H. M., Jusoh, M. A. M., Rahman, M. R. A., Syahrullail, S., and Latiff, Z. A. 2016. Torrefaction of Palm Biomass Briquettes at Different Temperature. Jurnal Teknologi 78:61–67.

Fuad, M. A. H. M., Faizal, H. M., Rahman, M. R. A., and Latiff, Z. A. 2018. Torrefaction of Densified Empty Fruit Bunches with Addition of Plastics Waste. Biofuels. 1–11.

Gucho, E. M., Shahzad, K., Bramer, E. A., Akhtar, N. A., and Brem, G. 2015. Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus. Energies. 8(5):3903–3923.

Ribeiro, J. M. C., Godina, R., Matias, J. C. de O., and Nunes, L. J. R. 2018. Future Perspectives of Biomass Torrefaction: Review of the Current State-of-the-Art and Research Development. Sustainability. 10(7):2323.

Chen, W.-H., Peng, J., and Bi, X. T. 2015. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 44:847–866.

Zannikos, F., Kalligeros, S., Anastopoulos, G., and Lois, E. 2013. Converting Biomass and Waste Plastic to Solid Fuel Briquettes. Journal of Renewable Energy. 2013.

Poudel, J., Ohm, T.-I., Gu, J. H., Shin, M. C., and Oh, S. C. 2017. Comparative Study of Torrefaction of Empty Fruit Bunches and Palm Kernel Shell. Journal of Material Cycles and Waste Management. 19(2):917–927.

Faizal, H. M., Shamsuddin, H. S., Heiree, M. H. M., Hanaffi, M. F. M. A., Rahman, M. R. A., Rahman, M. M., and Latiff, Z. A. 2018. Torrefaction of Densified Mesocarp Fibre and Palm Kernel Shell. Renewable Energy. 122:419–428.

Lau, H. S., Ng, H. K., Gan, S., and Jourabchi, S. A. 2018. Torrefaction of Oil Palm Fronds for Co-Firing in Coal Power Plants. Energy Procedia. 144:75–81.

Rashid, S. R. M., Saleh, S., and Samad, N. A. F. A. 2017. Proximate Analysis and Calorific Value Prediction Using Linear Correlation Model for Torrefied Palm Oil Wastes. MATEC Web of Conferences, EDP Sciences. p. 4002.

Aliyu, A. S., Aziz, A. A., Yahya, A., and Lattiff, Z. A. 2015. Potential Of Oil Palm Frond Liquid Extract And Fiber As Feedstock For Bio-Butanol Production. Jurnal Teknologi. 74(10):. 63-67

Ikubar, M. R. M., Manan, M. A., Salleh, M. M., and Yahya, A. 2018. Solid-State Fermentation of Oil Palm Frond Petiole for Lignin Peroxidase and Xylanase-Rich Cocktail Production. 3 Biotech. 8(5):259.

Bulan, R., Tineke, M., and Wawan, H. Physical and Mechanical Properties of Palm Frond for the Development of Palm Oil Waste Chopper and Pressing Machine Design. International Journal of Scientific & Engineering Research (IJSER). 6(2):117–120.

Aina, F. N., Shuhaida, H., and Jamaliah, J. 2016. Physiochemical Changes and Mass Balance of Raw and Alkaline Pretreated Oil Palm Frond: Pressed versus Non-Pressed Sample. International Journal of Applied Engineering Research. 11(19):9886–9893.

Roslan, A. M., Zahari, M. A. K. M., Hassan, M. A., and Shirai, Y. 2014. Investigation of Oil Palm Frond Properties for Use as Biomaterials and Biofuels. Tropical Agriculture and Development 58(1):26–29.

Ooi, Z. X., Teoh, Y. P., Kunasundari, B., and Shuit, S. H. 2017. Oil Palm Frond as a Sustainable and Promising Biomass Source in Malaysia: A Review. Environ. Environmental Progress & Sustainable Energy 36(6):1864–1874.

Hong, L. S., Ibrahim, D., and Omar, I. C. 2012. Oil Palm Frond for the Production of Bioethanol. International Journal of Biochemistry and Biotechnology 1(1):7–11.

Mandang, T., Sinambela, R., and Pandianuraga, N. R. 2018. Physical and Mechanical Characteristics of Oil Palm Leaf and Fruits Bunch Stalks for Bio-Mulching. IOP Conference Series: Earth and Environmental Science, IOP Publishing. 12015.

Malaysia Innovation Agency. 2011. National Biomass Strategy 2020. New Wealth Creat. Malaysia’s Palm Oil Ind. Malaysia.

Ishida, M., and Abu Hassan, O. 19,97. Utilization of Oil Palm Frond as Cattle Feed. Japan Agricultural Research Quarterly. 31:41–48.

EN ISO 18134-2:2015. 2015. Solid Biofuels–Determination of Moisture Content–Oven Dry Method–Part 2. 2.

EN ISO 18122:2015. 2015. Solid Biofuels. Determination of Ash Content.

EN ISO 18125: 2017. 2017. Solid Biofuels—Determination of Calorific Value.

Huangfu, Y., Li, H., Chen, X., Xue, C., Chen, C., and Liu, G. 2014. Effects of Moisture Content in Fuel on Thermal Performance and Emission of Biomass Semi-Gasified Cookstove. Energy Sustain. Dev. 21:60–65.

Faizal, H. M., Salleh, A. H. M., Shamsuddin, H. S., Ariff, M., Fuad, H. M., Latiff, Z. A., and Rahman, M. R. A. 2017. Torrefaction of Pulverized Empty Fruit Bunch and Polyethylene Plastics Waste Mixture. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 29(1):1–9.

EN ISO 18123:2015. 2015. Solid Biofuels – Determination of the Content of Volatile Matter.

Lee, S. M., and Lee, J.-W. 2014. Optimization of Biomass Torrefaction Conditions by the Gain and Loss Method and Regression Model Analysis. Bioresource Technology. 172:438–443.

Uemura, Y., Omar, W. N., Aziah, N., Othman, B., and Yusup, S. B. 2011. Effect of Atmosphere on Torrefaction of Oil Palm Wastes. World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden. 516–523.

Peng, J. H., Bi, H. T., Sokhansanj, S., and Lim, J. C. 2012. A Study of Particle Size Effect on Biomass Torrefaction and Densification. Energy & Fuels. 26(6):3826–3839.

Wang, X., Hu, J., Liang, Y., and Zeng, J. 2011. TCF Bleaching Character of Soda-Anthraquinone Pulp from Oil Palm Frond. BioResources. 7(1):275–282.

Zakaria, M. R., Fujimoto, S., Hirata, S., and Hassan, M. A. 2014. Ball Milling Pretreatment of Oil Palm Biomass for Enhancing Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 173(7):1778–1789.

Noda, R., Matsuhisa, Y., Ito, T., and Horio, M. 2003. Alkali Metal Evolution Characteristics of Wood Biomass during Pyrolysis and Gasification. Proceedings for the Annual Meeting of the Japan Institute of Energy, Japan, 196–197.

Liu, X., and Bi, X. T. 2011. Removal of Inorganic Constituents from Pine Barks and Switchgrass. Fuel Processing Technology. 92(7):1273–1279.

Abdullah, N., and Sulaiman, F. 2013. The Properties of the Washed Empty Fruit Bunches of Oil Palm. Journal of Physical Science 24(2):117–137.

Ahiduzzaman, M., and Islam, A. K. M. S. 2015. Energy Yield of Torrefied Rice Husk at Atmospheric Condition. Procedia Engineering. 105:719–724.

Downloads

Published

2021-06-27

How to Cite

Mohd Fuad, M. A. H. ., Loijon, E. J. A. ., Hasan, M. F., Abdul Rahman, M. R. ., Nyakuma, B. B. ., & Mad Saad, S. . (2021). Torrefaction of Oil Palm Frond Petiole: Effect of Particle Sizes, Sections and Batches . Journal of Energy and Safety Technology (JEST), 4(1). https://doi.org/10.11113/jest.v4n1.77

Issue

Section

Articles