Thermal Characterization of Malaysian Biomass via Thermogravimetric Analysis
DOI:
https://doi.org/10.11113/jest.v1n1.6Keywords:
Biomass, pyrolysis, thermogravimetric analysis.Abstract
In this work, thermal degradation behavior of six local biomasses such as empty fruit bunch, rice husk, coconut pulp, saw dust, coconut shell, and sugarcane bagasse in Malaysia via pyrolysis was studied. The pyrolysis process was carried out from 25 to 700 °C under nitrogen atmosphere flowing at 150 ml/min via a thermogravimetric analyzer. The effect of biomass type was investigated on pyrolysis behavior. The particle size of biomass was in the range of 0.3 ≤ dp1 < 0.5 mm, whereas the heating rate was fixed at 80 °C/min. The thermogravimetric analysis (TGA) data were divided into three phases of degradation: moisture evolution, hemicellulose-cellulose degradation, and lignin degradation. The results showed that all biomass samples degraded between 25 and 170 °C in Phase I of moisture evolution. Among the biomass samples, coconut pulp achieved the highest mass loss (81.9%) in Phase II of hemicellulose-cellulose degradation. Lignin in all biomass samples gradually degraded from 450 to 700 °C in Phase III of lignin degradation. This study provides an important basis in understanding the intrinsic thermochemistry behind degradation reactions.References
Garcia-Bacaicoa, P., J. F. Mastral, J. Ceamanos, C. Berrueco, S. Serrano. 2008. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier. Bioresour Technology. 99: 5485-5491.
Balasundram, V., N. Ibrahim, R.M. Kasmani, R. Isha, M.KA. Hamid, H. Hasrinah, R.R. Ali. 2018. Catalytic upgrading of Sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil. Applied Energy. 220: 787-799.
Zafar. S. 2015. Bioenergy Developments in Malaysia. Available: http://www.bioenergyconsult.com/tag/biomass-resources-in-malaysia/
Balasundram, V., N. Ibrahim, R.Md. Kasmani, M.K.A. Hamid, R. Isha, H. Hasrinah, R.R. Ali. 2017. Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production. 167: 218-228.
Pütün, A. E. 2010. Biomass to Bio-Oil via Fast Pyrolysis of Cotton Straw and Stalk. Energy Sources. 24: 275-285.
Acikgoz. C., and O. M. Kockar. 2007. Flash pyrolysis of linseed (Linum usitatissimum L.) for production of liquid fuels. Journal of Analytical and Applied Pyrolysis. 78: 406-412.
Mansaray. K.G., and A. E. Ghaly. 1998. THERMAL DEGRADATION OF RICE HUSKS IN NITROGEN ATMOSPHERE. Bioresource Technology. 65: 13-20.
Mendes, F.L., V.L. Ximenes, M.B.B. de Almeida, D.A. Azevedo, N.S. Tessarolo, A.R. Pinho. 2016. Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis. 122: 395-404.
Balasundram, V., N. Ibrahim, M.D.M. Samsudin, R.Md. Kasmani, M.K.A. Hamid, R. Isha, H. Hasrinah. 2017. Thermogravimetric Studies on the Catalytic Pyrolysis of Rice Husk. Chemical Engineering Transactions. 56: 427-432.
Vyazovkin, S., A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N., Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta. 520: 1-19.
Balasundram, V., N. Ibrahim, R.Md. Kasmani, M.K.A. Hamid, R. Isha, H. Hasrinah, R.R. Ali. 2017. The Effect of Catalyst Loading (Ni-Ce/Al2O3) on Coconut Copra Pyrolysis via Thermogravimetric Analyser. Chemical Engineering Transactions. 56: 901-906.
Sheeba, K. N., J.S.C. Babu, and S. Jaisankar. 2010. The Reaction Kinetics for Coir Pith Pyrolysis in Thermogravimetric Analyzer. Energy Sources Part a-Recovery Utilization and Environmental Effects. 32: 1837-1850.
Yiin, C.L., S., Yusup, A.T., Quitain, Y., Uemura, M., Sasaki, T., Kida. 2018. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil. Bioresource Technology. 255: 189-197.
Parthasarathy, P., K.S. Narayanan, L. Arockiam. 2013. Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and Bioenergy. 58: 58-66.
Munir, S., S.S. Daood, W. Nimmo, A.M. Cunliffe, B.M. Gibbs. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology. 100: 1413-1418.
Vamvuka, D., E. Kakaras, E. Kastanaki, P. Grammelis. 2003. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel. 82: 1949-1960.
Omar, R., A. Idris, R. Yunus, K. Khalid, M.I.A. Isma. 2011. Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel. 90: 1536-1544.
Raveendran, K., A. Ganesh, and K.C. Khilart. 1995. Influence if mineral matter on biomass pyrolysis characteristics. Fuel. 74: 1812-1822.
Kataki, R., and D. Konwer. 2002. Fuelwood characteristics of indigenous tree species of north-east India. Biomass & Bioenergy. 22: 433-437.
de Diego, L.F., F. Garcia-Labiano, A. Abad, P. Gayán, J. Adánez. 2003. Effect of Moisture Content on Devolatilization Times of Pine Wood Particels in a Fludized Bed. Energy & Fuels. 17: 285-290.
Demirbas, A. 2005. Relationship between initial moisture content and the liquid yield from pyrolysis of sawdust. Energy Sources. 27: 823-830.
Zabaniotou, A., O. Ioannidou, E. Antonakou, A. Lappas. Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass. International Journal of Hydrogen Energy. 33: 2433-2444.
Demirbas, A. 2008. Partial hydrogenation effect of moisture contents on the combustion oils from biomass pyrolysis. Energy Sources Part a-Recovery Utilization and Environmental Effects. 30: 508-515, 2008.
Demirbas, A. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science. 30: 219-230, 2004.
Colomba D.B., G. Signorelli, C.D. Russo, G. Rea. 1999. Product Distribution from Pyrolysis of Wood and Agricultural Residues. Ind. Eng Chem. Res. 38: 2216-2224.
Mansaray, K.G., and A.E.Ghaly. 1999. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass & Bioenergy. 17: 19-31, 1999.
El-Sayed, S.A., and M. E. Mostafa. 2015. Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques. Waste and Biomass Valorization. 6: 401-415.
Sensoz, S. 2003. Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresource Technology. 89: 307-311.
Goenka, R., P. Parthasarathy, N. K. Gupta, N. K. Biyahut, and S. Narayanan. 2015. Kinetic Analysis of Biomass and Comparison of its Chemical Compositions by Thermogravimetry, Wet and Experimental Furnace Methods. Waste and Biomass Valorization. 6: 989-1002.
Parthasarathy, P., K. S. Narayanan, and L. Arockiam. 2013. Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass & Bioenergy. 58: 58-66.
Ghaly, A.E., and K. G. Mansaray. 1999. Comparative study on the thermal degradation of rice husks in various atmospheres. Energy Sources. 21: 867-881.
Gomez, L.D., C.G. Steele-King, and S. J. McQueen-Mason. 2008. Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol. 178: 473-85.
Chen, W.H., Y. J. Tu, and H. K. Sheen. 2010. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research. 34: 265-274.
Chen, W.H., and J. S. Wu. 2009. An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy. 34: 1458-1466.
White, J.E., W.J., Catallo, B.L., Legendre. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis. 91: 1-33.
Kastanaki, E., D. Vamvuka, P. Grammelis, E. Kakaras. 2002. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology. 77-78: 159-166.