CO2 Methanation over Mesoporous Silica Based Catalyst: A Comprehensive Study

Authors

  • Fatah N. A. A. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
  • Jalil A. A. Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia
  • Rahman A. F. A. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
  • Hambali H. U. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
  • Hussain I. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/jest.v2n2.51

Keywords:

carbon dioxide, methanation, mesoporous, silica, basicity

Abstract

The abundance presence of CO2 released into the atmosphere has gained numerous consideration for an effective method to mitigate the CO2 build up and recycling the carbon resource. Among the catalytic reactions, the methanation of CO2 has been an indispensable reaction to transform toxic CO2 into methane which can be use as energy carrier or valuable chemical. The application of heterogeneous catalyst in CO2 methanation plays a significant role due to its effectiveness and stability which led to lower costs for large scale production.  This article discussed the recent developments of silica based catalyst for CO2 methanation with emphasized on its physicochemical properties and catalytic performance. In summary, the nature of silica support material such as morphology, textural properties and nature of basicity has a great influence on its catalytic performance towards CO2 methanation.

References

Fatah, N. A. A., A. A. Jalil, N. F. M. Salleh, M. Y. S. Hamid, Z. H. Hassan and M. G. M. Nawawi. 2019. Elucidation of Cobalt Disturbance On Ni/Al2O3 In Dissociating Hydrogen Towards Improved CO2 Methanation And Optimization By Response Surface Methodology (RSM). International Journal of Hydrogen Energy . In press. https://doi.org/10.1016/j.ijhydene.2019.04.119

Yang, Y., S. Lim, G. Du, Y. Chen, D. Ciuparu and G. L. Haller. 2005. Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves. Journal of Physical Chemistry B. 109: 13237–13246.

Du, G., S. Lim, Y. Yang, C. Wang, L. Pfefferle and G. L. Haller. 2007. Methanation of Carbon Dioxide On Ni-Incorporated MCM-41 Catalysts: The Influence Of Catalyst Pretreatment And Study Of Steady-State Reaction. Journal of Catalysis. 249: 370–379..

Aziz, M. A. A., A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap and M. R. Sazegar. 2014. Highly Active Ni-Promoted Mesostructured Silica Nanoparticles For CO2 Methanation. Applied Catalysis B Environmental.147: 359–368.

Liu, Q., and Y. Tian. 2017. One-Pot Synthesis Of Nio/SBA-15 Monolith Catalyst With A Three-Dimensional Framework For CO2 Methanation. International Journal of Hydrogen Energy. 42: 12295–12300.

Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky. 1998. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 80: 548– 552.

Lu, B., and K. Kawamoto. 2012. Direct synthesis Of Highly Loaded And Well-Dispersed Nio/SBA-15 For Producer Gas Conversion. RSC Advances. 2: 6800.

Fatah, N. A. A., S. Triwahyono, A. A. Jalil, A. Ahmad and T. A. T. Abdullah. 2016. n-Heptane Isomerization Over Mesostructured Silica Nanoparticles (MSN): Dissociative-Adsorption Of Molecular Hydrogen On Pt And Mo Sites. Applied Catalysis A General. 516: 135–143.

N.A.A., F., J. A.A. and T. S. 2018. Platinum and Molybdenum Oxide Supported on Mesostructured Silica Nanoparticles for n-Pentane and Cyclohexane Isomerization. Journal of Energy & Safety Technology. 1: 24–30.

Aziz, M. A. A., A. A. Jalil, S. Triwahyono and S. M. Sidik. 2014. Methanation of carbon Dioxide On Metal-Promoted Mesostructured Silica Nanoparticles. Applied Catalysis A General. 486: 115–122.

Febriyanti, E., V. Suendo, R. R. Mukti, A. Prasetyo, A. F. Arifin, M. A. Akbar, S. Triwahyono, I. N. Marsih and Ismunandar. 2016. Further Insight into the Definite Morphology and Formation Mechanism of Mesoporous Silica KCC-1. Langmuir. 32: 5802–5811.

Polshettiwar, V., D. Cha, X. Zhang and J. M. Basset. 2010. High-surface-area silica nanospheres (KCC-1) with a fibrous Morphology. Angewandte Chemie International Edition. 49: 9652–9656.

Moon, D. S., and J. K. Lee. 2012. Tunable Synthesis of Hierarchical Mesoporous Silica Nanoparticles with Radial Wrinkle Structure. Langmuir. 28:12341–12347.

Bayal, N., B. Singh, R. Singh and V. Polshettiwar. 2016. Size and Fiber Density Controlled Synthesis of Fibrous Nanosilica Spheres (KCC-1). Scientific Report. 6: 1–11.

Yang, P., S. Gai and J. Lin. 2012. Functionalized Mesoporous Silica Materials For Controlled Drug Delivery. Chemical Society Reviews. 41: 3679–3698.

Fatah, N. A. A., S. Triwahyono, A. A. Jalil, N. Salamun, C. R. Mamat and Z. A. Majid. 2017. n-Heptane Isomerization Over Molybdenum Supported On Bicontinuous Concentric Lamellar Silica KCC-1: Influence Of Phosphorus And Optimization Using Response Surface Methodology (RSM). Chemical Engineering Journal. 314: 650–659.

Patil, U., A. Fihri, A.-H. Emwas and V. Polshettiwar. 2012. Silicon Oxynitrides Of KCC-1, SBA-15 And MCM-41 For CO2 Capture With Excellent Stability And Regenerability. Chemical Science. 3: 2224.

Hamid, M. Y. S., M. L. Firmansyah, S. Triwahyono, A. A. Jalil, R. R. Mukti, E. Febriyanti, V. Suendo, H. D. Setiabudi, M. Mohamed and W. Nabgan. 2017. Oxygen vacancy-Rich Mesoporous Silica KCC-1 for CO2 methanation. Applied Catalysis A General. 532: 86–94.

Downloads

Published

2019-12-09

How to Cite

N. A. A., F., A. A., J., A. F. A., R., H. U., H., & I., H. (2019). CO2 Methanation over Mesoporous Silica Based Catalyst: A Comprehensive Study. Journal of Energy and Safety Technology (JEST), 2(2). https://doi.org/10.11113/jest.v2n2.51

Issue

Section

Articles