Platinum and Molybdenum Oxide Supported on Mesostructured Silica Nanoparticles for n-Pentane and Cyclohexane Isomerization

Authors

  • Fatah, N.A.A. Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Jalil, A.A. Centre of Hydrogen Economy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Triwahyono, S. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jest.v1n1.5

Keywords:

Platinum, molybdenum oxide, mesostructured silica nanoparticles, isomerization.

Abstract

Alkane isomerization into its equivalent branched isomers has gained numerous attention as a reaction to obtain high quality fuel. In this study, platinum and molybdenum oxide supported on mesostructured silica nanoparticles (Pt/MoO3/MSN) was prepared via impregnation method and tested for n-pentane and cyclohexane isomerization. The catalyst was characterized by using X-ray diffraction (XRD), nitrogen (N2) physisorption, and pyridine Fourier-transform infrared (pyridine-FTIR) spectroscopy. The IR result revealed that the addition of Pt and MoO3 into MSN formed different strength of Lewis and Brönsted acid sites. It was observed that the catalyst possessed strong acid sites and several numbers of relatively weak Lewis and Brönsted acid sites. Pt/MoO3/MSN was catalytically active towards n-pentane and cyclohexane isomerization with conversion of 63 and 87%, respectively, at 300 °C. It was proposed that the addition of Pt might assist the generation of active protonic acid sites from molecular hydrogen via the mechanism of hydrogen spillover and hence improve isomerization reaction.

References

Liu, P., Chang, W. T., Wang, J., Wu, M. Y., and Li, Y. X. 2015. MoP/Hβ catalyst prepared by low-temperature auto-combustion for hydroisomerization of n-heptane. Catalysis Communications, 66, 79-82. [2] Setiabudi, H. D., Jalil, A. A., and Triwahyono, S. 2012. Ir/Pt-HZSM5 for n-pentane isomerization: Effect of iridium loading on the properties and catalytic activity. Journal of Catalysis, 294, 128-135.

Al-Kandari, H., Al-Kharafi, F., and Katrib, A. 2009. Large scale hydroisomerization reactions of n-heptane on partially reduced MoO3/TiO2. Applied Catalysis A: General, 361(1), 81-85.

Annuar, N. H. R., Jalil, A. A., Triwahyono, S., Fatah, N. A. A., Teh, L. P., and Mamat, C. R. 2014. Cumene cracking over chromium oxide zirconia: Effect of chromium (VI) oxide precursors. Applied Catalysis A: General, 475, 487-496. [5] Timmiati, S. N., Jalil, A. A., Triwahyono, S., Setiabudi, H. D., and Annuar, N. H. R. 2013. Formation of acidic Brönsted (MoOx)−(Hy)+ evidenced by XRD and 2, 6-lutidine FTIR spectroscopy for cumene cracking. Applied Catalysis A: General, 459, 8-16. [6] Ruslan, N. N., Triwahyono, S., Jalil, A. A., Timmiati, S. N., and Annuar, N. H. R. 2012. Study of the interaction between hydrogen and the MoO3–ZrO2 catalyst. Applied Catalysis A: General, 413, 176-182. [7] Karim, A. H., Jalil, A. A., Triwahyono, S., Sidik, S. M., Kamarudin, N. H. N., Jusoh, R and Hameed, B. H. (2012). Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. Journal of colloid and interface science, 386(1), 307-314. [8] Heikkilä, T., Santos, H. A., Kumar, N., Murzin, D. Y., Salonen, J., Laaksonen, T., and Lehto, V. P. 2010. Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 483-494.

Patel, A., Shukla, P., Rufford, T. E., Rudolph, V., and Zhu, Z. 2014. Selective catalytic reduction of NO with CO using different metal-oxides incorporated in MCM-41. Chemical Engineering Journal, 255, 437-444.

Kamarudin, N. H. N., Jalil, A. A., Triwahyono, S., Salleh, N. F. M., Karim, A. H., Mukti, R. R. and Ahmad, A. 2013. Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: Effect on physicochemical properties. Microporous and Mesoporous Materials, 180, 235-241.

Zakharova, G. S., Täschner, C., Volkov, V. L., Hellmann, I., Klingeler, R., Leonhardt, A., and Büchner, B. 2007. MoO3− δ nanorods: Synthesis, characterization and magnetic properties. Solid State Sciences, 9(11), 1028-1032.

Ivanova, T., Surtchev, M., and Gesheva, K. 2002. Investigation of CVD molybdenum oxide films. Materials Letters, 53(4), 250-257.

Aziz, M.A.A., Jalil, A.A., Triwahyono, S., Mukti, R.R., Taufiq-Yap, Y.H., and Sazegar, M.R. 2014. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental (147) 359–368.

Triwahyono, S., Yamada, T. and Hattori, H. (2003). IR study of acid sites on WO3–ZrO2 and Pt/WO3–ZrO2. Applied Catalysis A: General (242) 101–109.

Kamarudin, N.H. N., Jalil, A.A., Triwahyono, S., Mukti, R.R., Aziz, M.A.A., Setiabudi, H.D., Muhid, M.N.M., and Hamdan, H. (2012). Interaction of Zn2+ with extraframework aluminum in HBEA zeolite and its role in enhancing n-pentane isomerization. Applied Catalysis A: General, (104) 431–432.

Downloads

Published

2018-08-01

How to Cite

N.A.A., F., A.A., J., & S., T. (2018). Platinum and Molybdenum Oxide Supported on Mesostructured Silica Nanoparticles for n-Pentane and Cyclohexane Isomerization. Journal of Energy and Safety Technology (JEST), 1(1). https://doi.org/10.11113/jest.v1n1.5

Issue

Section

Articles