A Contemporary Assessment on Composite Titania onto Graphitic Carbon Nitride-Based Catalyst as Photocatalyst

Authors

  • Azami M. S. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Jalil A. A School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hitam C. N. C. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mamat C. R Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siang T. J. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hussain I. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hambali H. U. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jest.v2n1.39

Keywords:

Photocatalyst, titanium dioxide, graphitic carbon nitride, heterojunction, visible light.

Abstract

Titanium dioxide (TiO2) has drawn widespread interest by researchers as a precious semiconductor that is responsive towards photodegradation of various pollutants. This catalyst has its own limitations such as fast electron-hole recombination, wide band gap, and can only be utilised under ultraviolet (UV) region. In order to overcome these problems, the addition of a metal-free dopant is a common practice to prevent electron-hole recombination and enhance photodegradation under visible light. Among various types of metal-free catalysts, carbon nitride material has received much attention due to its numerous benefits such as good in terms of physical and chemical strength, as well as an attractive electronic band combined with a band gap (2.7 eV). This review summarised recent works in the development of titania incorporated with graphitic carbon nitride (g-C3N4) for enhanced photocatalytic activity.

References

Mohamed, N. B., and S. A. Raed. 2015. Review Article: Chemical Oxidation and Membrane Filtration Technologies for Wastewater Treatment. Australian Journal of Basic and Applied Sciences. 9: 263-273.

Azami, M. S., W. I. Nawawi, Ali H. Jawad, M. A. M Ishak, K. Ismail. 2017. N-doped TiO2 Synthesised via Microwave Induced Photocatalytic on RR4 Dye Removal under LED Light Irradiation. Sains Malaysiana 46: 1309-1316.

Fujishima, A., and K. Honda. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 238: 37-38.

Nawawi, W. I., M. S. Azami, L. S. Ang, M. A. M. Ishak, K. Ismail. 2017. Modification and Characterization of Microwave Assisted N doped TiO2 – A Photodegradation Study under Suspension and Immobilized System. Water Quality Research Journal of Canada. 51-63.

Jaafar, N. F., A. A. Jalil, S. Triwahyono. 2017. Visible-Light Photoactivity of Plasmonic Silver Supported on Mesoporous TiO2 Nanoparticles (Ag-MTN) for Enhanced Degradation of 2-chlorophenol: Limitation of Ag-Ti Interaction. Applied Surface Science. 392: 1068–1077.

Hitam, C. N. C., A.A. Jalil, S. Triwahyono, A.F.A. Rahman, N.S. Hassan, N.F. Khusnun, S.F. Jamian, C.R. Mamat, W. Nabgan, A. Ahmad. 2018. Effect of Carbon-Interaction on Structure-Photoactivity of Cu Doped Amorphous TiO2 Catalysts for Visible-Light-Oriented Oxidative Desulphurization of Dibenzothiophene. Fuel. 216: 407-417.

Regonini, D., C. R. Bowen, A. Jaroenworaluck, R. Stevens. 2013. A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Materials Science and Engineering: R: Reports. 74: 377-406.

Aziz, F. F. A., A. A. Jalil, S. Triwahyono, M. Mohamed. 2018. Controllable Structure of Fibrous SiO2–ZSM-5 Support Decorated with TiO2 Catalysts for Enhanced Photodegradation of Paracetamol. Applied Surface Science. 455: 84-95.

Valentin, C. D., and G. Pacchioni. 2013. Trends in Non-Metal Doping of Anatase TiO2: B, C, N and F. Catalysis Today. 206:12–18.

Azami, M. S., S. K. Ain, R. Zaharudin, F. Bakar, W. I. Nawawi. 2016. Nitrogen Doped TiO2 Prepared under Microwave Irradiation: Effect of Different Irradiation Light. Applied Mechanics and Materials. 835: 372-377.

Pan, L., G. Shen, J. Zhang, X. Wei, L. Wang, J. Zou, X. Zhang. 2015. TiO2–ZnO Composite Sphere Decorated with ZnO Clusters for Effective Charge Isolation in Photocatalysis. Industrial & Engineering Chemistry Research. 54: 7226–7232.

Azami, M. S., W. I. Nawawi, D. S. M. Shukri. 2017. Formation of Predominant Interstitial N–TiO2 using Physical Preparation under Microwave Irradiation for Reactive Red 4 Dye Removal. Desalination and Water Treatment. 92: 172-180.

Jaafar, N. F., A. A. Jalil, S. Triwahyono, J. Efendi, R. R. Mukti, R. Jusoh, N. W. C. Jusoh, A. H. Karim, N. F. M. Salleh, V. Suendo. 2015. Direct in Situ Activation of Ag0 Nanoparticles in Synthesis of Ag/TiO2 and its Photoactivity. Applied Surface Science. 338: 75–84.

Li, J., Y. Liu, H. Li, C. Chen J. 2016. Fabrication of g-C3N4/TiO2 Composite Photocatalyst with Extended Absorption Wavelength Range and Enhanced Photocatalytic Performance. Journal of Photochemistry and Photobiology A: Chemistry. 317: 151-160.

Yasuhiro, S. K., Yusuke, S. Hirokatsu, T. Shunsuke, I. Satoshi, H. Takayuki. 2015. Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catalysis. 5: 3058-3066.

Mohammad, R. G., B. Francois, D. Trong-On. 2016. Graphitic Carbon Nitride-Titanium Dioxide Nanocomposite for Photocatalytic Hydrogen Production under Visible Light. International Journal of Chemical Reactor Engineering. 14: 851-858.

Usanginee, N., M. Lagnamayee, P. Kulamani. 2015. Visible Light Driven Novel g-C3N4/NiFe-LDH Composite Photocatalyst with Enhanced Photocatalytic Activity towards Water Oxidation and Reduction Reaction. Journal of Materials Chemistry A. 3: 18622-18635.

Yanlong, T., C. Fuxing, Z. Xiang, Y. Fei, Z. Baocheng, C. Zhi, L. Jiyang, X. Fengna, D. Xiaoping. 2014. Solvothermal Synthesis and Enhanced Visible Light Photocatalytic Activity of Novel Graphitic Carbon Nitride–Bi2MoO6 Heterojunctions. Powder Technology. 267: 126-133.

He, Y., Y. Wang, L. Zhang, B. Teng. 2015. High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst. Applied Catalysis B: Environmental. 168-169:1-8.

He, Y., L. Zhang, M. Fan, X. Wang, L. W. Mikel, Q. Nong, Y. Wu, L. Z. Zhao. 2015. Z-scheme SnO2−x/g-C3N4 Composite as an Efficient Photocatalyst for Dye Degradation and Photocatalytic CO2 Reduction. Solar Energy Materials and Solar Cells. 137: 175-184.

Wang, Y., Q. Wu, Y. Li, L. Liu, Z. Geng, Y. Li, J. Chen, W. Bai. 2018. Controlled Fabrication of TiO2/C3N4 core–shell Nanowire Arrays: a Visible-Light-Responsive and Environmental Friendly Electrode for Photoelectrocatalytic Degradation of Bisphenol A. Journal of Materials Science: Materials in Electronics. 53: 11015-11026.

Wang, Y., W. Yang, X. Chen, J. Wang, Y. Zhu. 2018. Photocatalytic Activity Enhancement of Core-Shell Structure g-C3N4@TiO2 via Controlled Ultrathin g-C3N4 Layer. Applied Catalysis B: Environmental 220: 337-347.

Yan, X., Q. Gao, J. Qin, X. Hui, Z. Ye, J. Li, Z. Ma. 2018. A Facile Method for Fabricating TiO2/g-C3N4 Hollow Nanotube Heterojunction and its Visible Light Photocatalytic Performance. Materials Letters. 217: 1-4.

Tan, S., Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu,W. Zhou. 2018. Ti3+-TiO2/g-C3N4 Mesostructured Nanosheets Heterojunctions as Efficient Visible-Light-Driven Photocatalysts. Journal of Catalysis. 357: 90-99.

Ma, L., G. Wang, C. Jiang, H. Bao, Q. Xua. Synthesis of Core-Shell TiO2@g-C3N4 Hollow Microspheres for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light. Applied Surface Science. 430: 263-272.

Li, Y. N., Z. Y. Chen, M. Q. Wang, L. Z. Zhang, S. J. Bao. 2018. Interface Engineered Construction of Porous g-C3N4/TiO2 Heterostructure for Enhanced Photocatalysis of Organic Pollutants. Applied Surface Science. 440: 229-236.

Wei, H., W. A. McMaster, J. Z. Y. Tan, L. Cao, D. Chen, R. A. Caruso. 2017. Mesoporous TiO2/g-C3N4 Microspheres with Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C. 121: 22114-22122.

Wei, H., W. A. McMaster, J. Z. Y. Tan, L. Cao, D. Chen, R. A. Caruso. 2018. Tricomponent Brookite/Anatase TiO2/g-C3N4 Heterojunction in Mesoporous Hollow Microspheres for Enhanced Visible-Light Photocatalysis. Journal of Materials Chemistry A. 6: 7236-724.

Anjum, M., R. Kumar, S. M. Abdelbasir, M. A. Barakat. 2018. Carbon Nitride/Titania Nanotubes Composite for Photocatalytic Degradation of Organics in Water and Sludge: Pre-Treatment of Sludge, Anaerobic Digestion and Biogas Production. Journal of Environmental Management. 223: 495–502.

Zhang, J. J., S. S. Fang, J. Y. Mei, G. P. Zheng, X. C. Zheng, X. X. Guan. 2018. High-Efficiency Removal of Rhodamine B Dye in Water using g-C3N4 and TiO2 co-Hybridized 3D Graphene Aerogel Composites. Separation and Purification Technology. 194: 96–103.

Boonprakob, N., N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn. 2014. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. Journal of Colloid and Interface Science. 417: 402-409.

Downloads

Published

2019-06-24

How to Cite

M. S., A., A. A, J., C. N. C., H., C. R, M., T. J., S., I., H., & H. U., H. (2019). A Contemporary Assessment on Composite Titania onto Graphitic Carbon Nitride-Based Catalyst as Photocatalyst. Journal of Energy and Safety Technology (JEST), 2(1). https://doi.org/10.11113/jest.v2n1.39

Issue

Section

Articles