Effect of ZSM-5 Acidity in Enhancement of Methanol-to-Olefins Process
DOI:
https://doi.org/10.11113/jest.v2n1.37Keywords:
Methanol to olefins, propylene selectivity, ZSM-5, acidity, catalyst stability.Abstract
The skyrocketing demand for olefins especially propylene, have necessitated continuous efforts in finding alternate route for olefins production. Hence, methanol to olefins (MTO) was recognized as a feasible process since methanol could simply be mass produced from any gasifiable carbon-based feedstock, such as natural gas, coal, and biomass. Essentially, obtaining a more stable catalyst would improve economy of the MTO process. Acidity of catalyst has major influence in MTO, thus it is an indispensable parameter for conversion of methanol into value-added products. The present paper discusses the reactions involved in MTO process and the effect of acidity in enhancement of light olefin selectivity and catalytic stability. The paper also captured perspectives of crucial research and future direction for catalysts development and technologies that can potentiallly boost olefin production and make it competitive with the conventional olefin production processes.
References
Sun, C., J. M. Du, J. Liu, Y. S. Yang, N. Ren, W. Shen, H. L. Xu, and Y. Tang. 2010. A Facile Route To Synthesize Endurable Mesopore Containing ZSM-5 Catalyst For Methanol To Propylene Reaction. Chemical Communications. 46: 2671-2673.
Hickman, D. A. and L. D. Schmidt. 1993. Production of Syngas by Direct Catalytic Oxidation of Methane. Science. 259: 343-346.
Wen, W. Y. 1980. Mechanisms of Alkali Metal Catalysis in the Gasification of Coal, Char, or Graphite. Catalysis Reviews Science and Engineering. 22:1-28.
Qian, Q., J. Ruiz-Martinez, M. Mokhtar, A. M. Asiri, S. A. Al- Thabaiti, S. N. Basahel, and B. M. Weckhuysen. 2014. Single-Catalyst Particle Spectroscopy Of Alcohol-To-Olefins Conversions: Comparison between SAPO-34 and SSZ-13. Catalysis Today. 226: 14-24.
Hu, H., J. Lyu, J. Rui, J. Cen, Q. Zhang, Q. Wang, W. Han, and X. Li. 2016. The Effect Of Si/Al Ratio On The Catalytic Performance Of Hierarchical Porous ZSM-5 For Catalyzing Benzene Alkylation With Methanol. Catalysis Science & Technology. 6: 2647-2652.
Muller, S., Y. Liu, M. Vishnuvarthan, X. Sun, A.C. Van-Veen, G.L. Haller, M. Sanchez-Sanchez, and J.A. Lercher. 2015. Coke Formation And Deactivation Pathways On H-ZSM-5 In The Conversion Of Methanol To Olefins. Journal of Catalysis. 325: 48-59.
Ong, L. H., M. Domok, R. Olindo, A. C. van Veen, and J. A. Lercher. Dealumination of HZSM-5 Via Steam-Treatment. Microporous Mesoporous Mater. 164: 9-20.
Wei, R. C., C. Y. Li, C. H. Yang, and H. H. Shan. 2011. Effects of Ammonium Exchange And Si/Al Ratio On The Conversion Of Methanol To Propylene Over A Novel And Large Partical Size ZSM-5. Journal of Natural Gas Chemistry. 20: 261-265.
Hadi, N., A. Niaei, S. R. Nabavi, M. Navaei Shirazi, and R. Alizadeh. 2015. Effect of Second Metal On The Selectivity Of Mn/H-ZSM-5 Catalyst In Methanol To Propylene Process. Journal of Industrial and Engineering Chemistry. 29: 52-62.
Feng, R., X. Yana, X. Hua, Z. Yanb, J. Lina, Z. Lia, K. Houa, and M. J. Rood. 2018. Surface Dealumination Of Micro-Sized ZSM-5 For Improving Propylene Selectivity And Catalyst Lifetime In Methanol To Propylene (MTP) reaction. Catalysis Communications. 109: 1-5.
Tarach, K.A., J. Martinez-Triguero, F. Rey, and K. Gora-Marek. 2016. Hydrothermal Stability And Catalytic Performance Of Desilicated Highly Siliceous Zeolites ZSM-5. Journal of Catalysis. 339: 256-269.
Dessau, R.M., and R.B. Lapierre. 1982. On the Mechanism Of Methanol Conversion To Hydrocarbons over HZSM-5. Journal of Catalysis. 78: 136-141.
Wang, S., Y. Y. Chen, Z. H. Wei, Z. F. Qin, H. Ma, M. Dong, J. F. Li, W. B. Fan, and J. G. Wang. 2015. The Journal of Physical Chemistry C. 119: 28482-28498.
Zhu, Q., N. K. Junko, and T. Tatsumi. 2018. Co-Reaction Of Methanol And Ethylene Over MFI And CHA Zeolitic Catalysts. Microporous and Mesoporous Materials. 255: 174-184.
Yang, Y. S., C. Sun, J. M. Du, Y. H. Yue, W. M. Hua, C. L. Zhang, W. Shen, and H. L. Xu. 2012. The Synthesis Of Endurable B–Al–ZSM-5 Catalysts With Tunable Acidity For Methanol To Propylene Reaction. Catalysis Communications. 24: 44-47.
Barrer, R. M., and M. B. Makki. 1964. Molecular Sieve Sorbents From Clinoptilolite. Canadian Journal of Chemistry. 42: 1481-1487.
Qin, Z. X., J. P. Gilson, and V. Valtchev. 2015. Mesoporous Zeolites By Fluoride Etching. Current Opinion in Chemical Engineering. 8: 1-6.
Lago, R. M., W. O. Haag, R. J. Mikovsky, D. H. Olson, S. D. Hellring, K. D. Schmitt, and G. T. Kerr.1986. The Nature of the Catalytic Sites in HZSM-5- Activity Enhancement. Studies in Surface Science and Catalysis. 28: 677-684.
Zhang, Y. W., Y. M. Zhou, K. Z. Yang, Y. Li, Y. Wang, Y. Xu, and P. C. Wu. 2006. Effect of Hydrothermal Treatment On Catalytic Properties Of Ptsnna/ZSM-5 Catalyst For Propane Dehydrogenation. Microporous Mesoporous Mater. 96: 245-254.
Fan, Y., X. J. Bao, X. Y. Lin, G. Shi, and H. Y. Liu. 2006. Acidity Adjustment of HZSM-5 Zeolites by Dealumination and Realumination with Steaming and Citric Acid Treatments. The Journal of Physical Chemistry B. 110: 15411-15416.
Zhang, S. L., Y. J. Gong, Y. S. Liu, T. Dou, J. Xu, F. Deng. 2015. Hydrothermal Treatment On ZSM-5 Extrudates Catalyst For Methanol To Propylene Reaction: Finely Tuning The Acidic Property. Fuel Processing Technology. 129: 130-138.
Wu, L., Pieter C.M.M. Magusin, V. Degirmenci, M. Li, M.T. Sami, X. Zhu, B. Mezari, and E. J.M. Hensen. 2014. Acidic Properties Of Nanolayered ZSM-5 Zeolites. Microporous and Mesoporous Materials. 189: 144-157.
Nordvang, E. C., E. Borodina, J. Ruiz-Martinez, R. Fehrmann, and B. M. Weckhuysen. 2015. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite Hâ€ZSMâ€5 Crystals during Alcoholâ€toâ€Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy. Chemistry: A European Journal. 21: 17324-17335.
Losch, P., M. Boltza, C. Bernardona, B. Louisa, P. Ana, and V. Valtchev. 2016. Applied Catalysis A. 509: 30-37.
Rey, J., P. Raybaud, and C. Chizallet. 2017. Ab Initio Simulation of the Acid Sites at the External Surface of Zeolite Beta. ChemCatChem Journal. 9: 2176-2185.
Feng, R., X. Yana, X. Hua, Z. Yan, J. Lina, Z. Lia, and K. Hou. 2018. Surface Dealumination Of Micro-Sized ZSM-5 For Improving Propylene Selectivity And Catalyst Lifetime In Methanol To Propylene (MTP) reaction. Catalysis Communications. 109: 1-5.
Blay, V., E. Epelde, R. Miravalles, and L. Alvarado Perea. 2018. Converting Olefins To Propene: Ethene To Propene And Olefin Cracking. Catalysis Reviews. 60: 278-335.
Sadeghpour, P., and M. Haghighi. 2018. High-Temperature And Short-Time Hydrothermal Fabrication Of Nanostructured ZSM-5 Catalyst With Suitable Pore Geometry And Strong Intrinsic Acidity Used In Methanol To Light Olefins Conversion. Advanced Powder Technology. 29: 1175-1188.
Campo, P. D., U. Olsbye, K. P. Lillerud, S. Svelle, and P. Beato. 2018. Impact of Post-Synthetic Treatments On Unidirectional H-ZSM-22 Zeolite Catalyst: Towards Improved Clean MTG Catalytic Process. Catalysis Today. 299: 135-145.
Meng, X., M. Zhang, C. Chen, C. Li, W. Xiong, and M. Li. 2018. Insights Into The Role Of Silanols In Methanol To Propene Reaction Over Silicalite-2 Zeolite Through Post-Treatments. Applied Catalysis A. 558: 122-130.
Park, S. J., H. Jang, K. Y. Lee, and S. J. Cho. 2018. Improved Methanol-To-Olefin Reaction Selectivity And Catalyst Life By Ceo2 Coating Of Ferrierite Zeolite. Microporous and Mesoporous Materials. 256: 155-164.