Environment and Economic Assessment of Hydrogen Production from Methane and Ethanol


  • Mohamad Rizza Othman Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.
  • Umarul Imran Amran Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.
  • Arshad Ahmad Department of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia




Hydrogen production, life cycle analysis (LCA), economic assessment, Aspen Plus


Hydrogen is an interesting energy source alternative to fossil fuel which commonly produced from a non-renewable resource such as methane. Alternatively, ethanol is an attractive resource option for producing hydrogen because of its renewability. Assessing both alternatives is important for selection of better and sustainable option. In this work, we perform an environmental and economic assessment of both hydrogen production pathways and compare its performance. In doing that, both processes were modelled and simulated in Aspen Plus V8.6. Sensitivity analysis were performed as well. Life cycle assessment (LCA) ReciPe method was performed to evaluate the environmental performance using GaBi sotware. Overall, 16 categories impact assessment were evaluated. Economic assessment was based on capital expenditure (CAPEX) of all main equipment and operating expenditure (OPEX) of utilities. From LCA results, three categories were identified as highly significant namely climate change, fossil depletion and water depletion. Methane shows a higher impact on climate change. In contrary, ethanol shows a higher impact on fossil fuel resource depletion and water resources. Economic assessment shows that in term of capital expenditure (CAPEX) methane is 5.2% less compared to ethanol. Whereas, for operating expenditure (OPEX) methane is 12.8% less compared to ethanol. Overall, our findings show that methane outwit ethanol despite the latter uses a renewable source for hydrogen production.


Dincer,I. 2000. Renewable energy and sustainable development: a crucial review. Renewable & Sustainable Energy Reviews. 4(2): 157-175. doi: Doi 10.1016/S1364-0321(99)00011-8

Haseli, Y., Dincer, I., & Naterer, G. F. 2008. Thermodynamic analysis Of A Combined Gas Turbine Power System With A Solid Oxide Fuel Cell Through Exergy. Thermochimica Acta. 480(1-2): 1-9. doi: 10.1016/j.tca.2008.09.007

Kadier, A., Simayi, Y., Kalil, M. S., Abdeshahian, P., & Hamid, A. A. 2014. A Review Of The Substrates Used In Microbial Electrolysis Cells (Mecs) For Producing Sustainable And Clean Hydrogen Gas. Renewable Energy. 71: 466-472. doi: 10.1016/j.renene.2014.05.052

Koroneos, C. 2004. Life Cycle Assessment Of Hydrogen Fuel Production Processes. International Journal of Hydrogen Energy. 29(14): 1443-1450. doi: 10.1016/j.ijhydene.2004.01.016

Mas, V., Bergamini, M. L., Baronetti, G., Amadeo, N., & Laborde, M. 2008. A Kinetic Study of Ethanol Steam Reforming Using a Nickel Based Catalyst. Topics in Catalysis. 51(1-4): 39-48. doi: 10.1007/s11244-008-9123-y

Dufour, J., Serrano, D. P., GaÌlvez, J. L., Moreno, J., & GonzaÌlez, A. 2011. Hydrogen Production from Fossil Fuels: Life Cycle Assessment of Technologies with Low Greenhouse Gas Emissions. Energy & Fuels. 25(5): 2194-2202. doi: 10.1021/ef200124d

Giraldi, M. R., François, J.-L., & Martin-del-Campo, C. 2015. Life Cycle Assessment Of Hydrogen Production From A High Temperature Electrolysis Process Coupled To A High Temperature Gas Nuclear Reactor. International Journal of Hydrogen Energy. 40(10): 4019-4033. doi: 10.1016/j.ijhydene.2015.01.093

Verma, A., & Kumar, A. 2015. Life Cycle Assessment Of Hydrogen Production From Underground Coal Gasification. Applied Energy. 147: 556-568. doi: 10.1016/j.apenergy.2015.03.009

Authayanun, S., Suwanmanee, U., & Arpornwichanop, A. 2015. Enhancement of Dilute Bio-Ethanol Steam Reforming For A Proton Exchange Membrane Fuel Cell System By Using Methane As Co-Reactant: Performance And Life Cycle Assessment. International Journal of Hydrogen Energy. 40(36): 12144-12153. doi: 10.1016/j.ijhydene.2015.07.042

Galera, S., & Ortiz, F. J. G. 2015. Life Cycle Assessment Of Hydrogen And Power Production By Supercritical Water Reforming Of Glycerol. Energy Conversion and Management. 96: 637-645. doi: 10.1016/j.enconman.2015.03.031

Contreras, J. L., Salmones, J., Colín-Luna, J. A., Nuño, L., Quintana, B., Córdova, I., Fuentes, G. A. 2014. Catalysts for H2 Production Using The Ethanol Steam Reforming (A Review). International Journal of Hydrogen Energy. 39(33): 18835-18853. doi: 10.1016/j.ijhydene.2014.08.072

Muellerlanger, F., Tzimas, E., Kaltschmitt, M., & Peteves, S. 2007. Techno-Economic Assessment Of Hydrogen Production Processes For The Hydrogen Economy For The Short And Medium Term. International Journal of Hydrogen Energy, 32(16): 3797-3810. doi: 10.1016/j.ijhydene.2007.05.027

Braga, L. B., Silveira, J. L., da Silva, M. E., Tuna, C. E., Machin, E. B., & Pedroso, D. T. 2013. Hydrogen Production By Biogas Steam Reforming: A Technical, Economic And Ecological Analysis. Renewable and Sustainable Energy Review. 28: 166-173. doi: 10.1016/j.rser.2013.07.060

Roldan, R. 2015. Technical and economic feasibility of Adapting An Industrial Steam Reforming Unit For Production Of Hydrogen From Renewable Ethanol. International Journal of Hydrogen Energy. 40(4): 2035-2046. doi: 10.1016/j.ijhydene.2014.12.003

Boyano, A., Morosuk, T., Blanco-Marigorta, A. M., & Tsatsaronis, G. 2012. Conventional and Advanced Exergoenvironmental Analysis Of A Steam Methane Reforming Reactor For Hydrogen Production. Journal of Cleaner Production. 20(1): 152-160. doi: 10.1016/j.jclepro.2011.07.027

Antzara, A., Heracleous, E., Bukur, D. B., & Lemonidou, A. A. 2014. Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with in Situ CO2 Capture. Energy Procedia. 63: 6576-6589. doi: 10.1016/j.egypro.2014.11.694

Gutiérrez-Guerra, N., Jiménez-Vázquez, M., Serrano-Ruiz, J. C., Valverde, J. L., & de Lucas-Consuegra, A. 2015. Electrochemical Reforming vs. Catalytic Reforming Of Ethanol: A Process Energy Analysis For Hydrogen Production. Chemical Engineering and Processing: Process Intensification. 95: 9-16. doi: 10.1016/j.cep.2015.05.008

Rossetti, I., Compagnoni, M., & Torli, M. 2015a. Process Simulation And Optimisation Of H2 Production From Ethanol Steam Reforming And Its Use In Fuel Cells. 1. Thermodynamic And Kinetic Analysis. Chemical Engineering Journal. 281: 1024-1035. doi: 10.1016/j.cej.2015.08.02

Akande, A., Aboudheir, A., Idem, R., & Dalai, A. 2006. Kinetic Modeling Of Hydrogen Production By The Catalytic Reforming Of Crude Ethanol Over A Co-Precipitated Ni-Al2O3Ni-Al2O3 Catalyst In A Packed Bed Tubular Reactor. International Journal of Hydrogen Energy. 31(12): 1707-1715. doi: 10.1016/j.ijhydene.2006.01.001

Mathure, P. V., Ganguly, S., Patwardhan, A. V., & Saha, R. K. 2007. Steam Reforming Of Ethanol Using A Commercial Nickel-Based Catalyst. Industrial & Engineering Chemistry Research. 46(25): 8471-8479. doi: 10.1021/ie070321k

Han, S. J., Bang, Y., Song, J. H., Yoo, J., Park, S., Kang, K. H., & Song, I. K. 2016. Hydrogen Production By Steam Reforming Of Ethanol Over Dual-Templated Ni-Al2O3 Catalyst. Catalysis Today. 265: 103-110. doi: 10.1016/j.cattod.2015.07.041

Basile, A., Curcio, S., Bagnato, G., Liguori, S., Jokar, S. M., & Iulianelli, A. 2015. Water Gas Shift Reaction In Membrane Reactors: Theoretical Investigation By Artificial Neural Networks Model And Experimental Validation. International Journal of Hydrogen Energy. 40(17): 5897-5906. doi: 10.1016/j.ijhydene.2015.03.039

Hla, S. S., Morpeth, L. D., & Dolan, M. D. 2015. Modelling and Experimental Studies Of A Water-Gas Shift Catalytic Membrane Reactor. Chemical Engineering Journal. 276: 289-302. doi: 10.1016/j.cej.2015.04.07

Amadeo, N. E., & Laborde, M. A. 1995. Hydrogen production From The Low Temperature Water Gas Shift Reaction: Kinetics And Simualtion Of The Industrial Reactor. International Journal of Hydrogen Energy. 20: 949-956.

Mendes, D., Chibante, V., Mendes, A., & Madeira, L. M. 2010. Determination of the Low-Temperature Water-Gas Shift Reaction Kinetics Using a Cu-Based Catalyst. Industrial & Engineering Chemistry Research. 49(22): 11269-11279. doi: 10.1021/ie101137b

Amran, U. I., Ahmad, A., & Othman, M. R. 2017. Kinetic Based Simulation Of Methane Steam Reforming And Water Gas Shift For Hydrogen Production Using Aspen Plus. Chemical Engineering Transaction. 56: 1681-1686.

Singh, A. P., Singh, S., Ganguly, S., & Patwardhan, A. V. 2014. Steam Reforming Of Methane And Methanol In Simulated Macro & Micro-Scale Membrane Reactors: Selective Separation Of Hydrogen For Optimum Conversion. Journal of Natural Gas Science and Engineering. 18: 286-295. doi: 10.1016/j.jngse.2014.03.008

Li, B.-H., Zhang, N., & Smith, R. 2016. Simulation and Analysis Of CO2 Capture Process With Aqueous Monoethanolamine Solution. Applied Energy. 161: 707-717. doi: 10.1016/j.apenergy.2015.07.010

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Pennington, D. W. 2004. Life Cycle Assessment Part 1: Framework, Goal And Scope Definition, Inventory Analysis, And Applications. Environ Int. 30(5): 701-720. doi: 10.1016/j.envint.2003.11.005

Turton R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., & Bhattacharyya, D. 2013. ‘Analysis, Synthesis, and Design of Chemical Processes’ (Vol. Fourth Edition). Pearson Education Inc.

Chen, W.-H., Jheng, J.-G., & Yu, A. B. 2008. Hydrogen Generation From A Catalytic Water Gas Shift Reaction Under Microwave Irradiation. International Journal of Hydrogen Energy 33(18): 4789-4797. doi: 10.1016/j.ijhydene.2008.06.059

Haarlemmer, G. 2015. Simulation Study Of Improved Biomass Drying Efficiency For Biomass Gasification Plants By Integration Of The Water Gas Shift Section In The Drying Process. Biomass and Bioenergy. 81: 129-136. doi: 10.1016/j.biombioe.2015.06.002

Hajjaji, N., Pons, M. N., Renaudin, V., & Houas, A. 2013. Comparative Life Cycle Assessment Of Eight Alternatives For Hydrogen Production From Renewable And Fossil Feedstock. Journal of Cleaner Production. 44: 177-189. doi: 10.1016/j.jclepro.2012.11.043




How to Cite

Othman, M. R., Amran, U. I., & Ahmad, A. (2019). Environment and Economic Assessment of Hydrogen Production from Methane and Ethanol. Journal of Energy and Safety Technology (JEST), 2(2). https://doi.org/10.11113/jest.v2n2.23