EFFECT OF THE GEOMETRY AND MOORING LINE ON THE HYDRODYNAMICS OF A PONTOON MODEL FOR MARINE FLOATING PHOTOVOLTAICS

Renewable Energy Technology and Engineering

Authors

  • Daniel Harahap Magister of Innovation and System Technology, School of Interdisciplinary Management and Technology, Institut Teknologi Sepuluh November, Surabaya, Indonesia.
  • A. D. Rictanata Physic Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh November, Surabaya, Indonesia.
  • H. D. Armono School of Interdisciplinary Management and Technology, Institut Teknologi Sepuluh November, Surabaya, Indonesia.

DOI:

https://doi.org/10.11113/jest.v8.210

Keywords:

Marine Floating Photovoltaic (Marine FPV), Breakwater Mooring Line, Response Amplitude Operator (RAO).

Abstract

This study aimed to analyze the effects of different pontoon models, including variations in pontoon geometry and mooring lines, on the hydrodynamic responses of marine floating photovoltaic (FPV) systems using numerical models. The examined variables included the geometric shapes of the pontoons, the number of mooring lines, irregular wave patterns, and water depth. The results demonstrate that adding pontoons with breakwater geometries—specifically cylindrical and rectangular shapes—results in lower hydrodynamic responses than the Pure float model. Among the models tested, the breakwater configuration achieved the most significant reduction in hydrodynamic responses, with a decrease of 59% across the six degrees of freedom (DOF). The rectangular model was closely followed, with a 56% reduction, whereas the cylindrical model showed a 47% reduction. The use of six mooring lines can further minimize the effects of wave excitation and hydrodynamic responses across the six DOFs. On average, adding the mooring lines resulted in a 27% reduction in the response amplitude operator (RAO) values and a 9% decrease in the mooring line tension. This research provides valuable insights for designing and developing efficient and reliable marine FPVs, serving as a practical guide for the renewable energy industry to enhance performance and system sustainability.

Keywords—Marine Floating Photovoltaic (Marine FPV), Breakwater Mooring Line, Response Amplitude Operator (RAO).

References

A. S. Pramudiyanto and S. W. A. Suedy, “Energi Bersih dan Ramah Lingkungan dari Biomassa untuk Mengurangi Efek Gas Rumah Kaca dan Perubahan Iklim yang Ekstrim,” J. Energi Baru dan Terbarukan, vol. 1, no. 3, pp. 86–99, 2020, doi: 10.14710/jebt.2020.9990.

G. Dan, P. Pelayanan, F. Publik, and D. I. Indonesia, “G20 dan penguatan pelayanan fasilitas publik di indonesia,” vol. 1, no. 5, 2022.

PLN, “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030.,” Rencana Usaha Penyediaan Tenaga List. 2021-2030, pp. 2019–2028. 2021.

ESDM, “Kementerian ESDM Akan Tuntaskan 100% Rasio Elektrifikasi di 2022,” 2022. https://www.esdm.go.id/id/media-center/arsip-berita/kementerian-esdm-akan-tuntaskan-100-rasio-elektrifikasi-di-2022-

CNBC, “4.700 Desa Belum Teraliri Listrik, Begini Jurus PLN!,” 2022. https://www.cnbcindonesia.com/news/20220615172612-4-347429/4700-desa-belum-teraliri-listrik-begini-jurus-pln

“Where Sun Meets Water,” Where Sun Meets Water, 2019, doi: 10.1596/32804.

Z. Tajali and M. Shafieefar, “Hydrodynamic analysis of multi-body floating piers under Wave action,” Ocean Eng., vol. 38, no. 17–18, pp. 1925–1933, 2011, doi: 10.1016/j.oceaneng.2011.09.025.

S. M. Kim, M. Oh, and H. D. Park, “Analysis and prioritization of the Floating Photovoltaic system potential for reservoirs in Korea,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030395.

D. N. V As, “Edition March 2021 Amended October 2021 Design, development and operation of floating solar photovoltaic systems ( Preview copy ),” no. March, 2021.

Z. A. D. Kuswanto, “Pengaruh Bentuk Benda Dan Kedalaman Terhadap Gaya Angkat Ke Atas (Fa) Pada Fluida Statis,” pp. 4–20, 2013, [Online]. Available: https://repository.unej.ac.id/bitstream/handle/123456789/13204/Zaenal Abidin Dwi Kuswanto - 080210192060_1.pdf?sequence=1&isAllowed=y

M. Acharya and S. Devraj, “Floating Solar Photovoltaic ( FSPV ): A Third Pillar to Solar PV Sector ?,” TERI Discuss. Pap. ETC India Proj. (New Delhi Energy Resour. Institute), p. 68, 2019, [Online]. Available: www.teriin.org

N. A. S. Elminshawy, A. Osama, D. G. El-Damhogi, E. Oterkus, and A. M. I. Mohamed, “Simulation and experimental performance analysis of partially floating PV system in windy conditions,” Sol. Energy, vol. 230, no. August, pp. 1106–1121, 2021, doi: 10.1016/j.solener.2021.11.020.

D. Friel, M. Karimirad, T. Whittaker, and J. Doran, “Hydrodynamic investigation of design parameters for a Cylindrical type floating solar system,” Dev. Renew. Energies Offshore - Proc. 4th Int. Conf. Renew. Energies Offshore, RENEW 2020, no. October, pp. 763–770, 2021, doi: 10.1201/9781003134572-87.

R. Y. Yang and S. H. Yu, “A study on a floating solar energy system applied in an intertidal zone,” Energies, vol. 14, no. 22, 2021, doi: 10.3390/en14227789.

P. D. I. Torino, “Master of Science in Energy and Nuclear Engineering Master of Science Thesis Floating Photovoltaic systems : state of art , feasibility study in Florida and computational fluid dynamic,” 2020.

S. K. Das and M. Baghfalaki, “Mathematical modeling of response amplitude operator for Roll motion of a floating body: Analysis in the frequency domain with numerical validation,” J. Mar. Sci. Appl., vol. 13, no. 2, pp. 143–157, 2014, doi: 10.1007/s11804-014-1249-7.

S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F. Bontempo, and G. Marco, “Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems,” J. Clean. Prod., vol. 278, p. 124285, 2021, doi: 10.1016/j.jclepro.2020.124285.

S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F. B. Scavo, and G. M. Tina, “Recent technical advancements, economics and environmental impacts of Floating Photovoltaic solar energy conversion systems,” J. Clean. Prod., vol. 278, p. 124285, 2021, doi: 10.1016/j.jclepro.2020.124285.

J. Friel, D. Karimirad, M. Whittaker, T. Doran, “Hydrodynamic investigation of design parameters for a Cylindrical type floating solar system,” Dev. Renew. Energies Offshore - Proc. 4th Int. Conf. Renew. Energies Offshore, RENEW 2020, no. October, pp. 763–770, 2021, doi: 10.1201/9781003134572-87.

MIT OCW, “Morrison Equation, Spring 2004,” 2004.

E. Malayjerdi and M. R. Tabeshpour, “Response Amplitude Operators of Displacement, Velocity, and Acceleration of TLP,” no. December, pp. 22–25, 2015.

M. Baghfalaki, S. K. Das, and S. N. Das, “Analytical model to determine response amplitude operator of a floating body for coupled Roll and Yaw motions and frequency-based analysis,” Int. J. Appl. Mech., vol. 4, no. 4, 2012, doi: 10.1142/S1758825112500445.

A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants,” Renew. Sustain. Energy Rev., vol. 90, no. October 2017, pp. 1017–1026, 2018, doi: 10.1016/j.rser.2018.03.102.

A. I. Manolache, G. Andrei, and L. Rusu, “An Evaluation of the Efficiency of the Floating Solar Panels in the Western Black Sea and the Razim-Sinoe Lagunar System,” J. Mar. Sci. Eng., vol. 11, no. 1, 2023, doi: 10.3390/jmse11010203.

I. Ansys, “AQWA User Manual,” Ansys Inc., vol. 15317, no. October, pp. 724–746, 2012.

J. R. Shewchuk, “Triangle : Engineering a 2D Quality Mesh Generator and Delaunay Triangulator”.

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “M e g s q a w s,” vol. 50, no. 3, pp. 885–900, 2007.

M. A. Lukiantchuki, A. P. Shimomura, F. M. da Silva, and R. M. Caram, “Evaluation of simulations with wind tunnel experiments: Pressure coefficients at openings in the sawtooth building,” Acta Sci. - Technol., vol. 40, 2018, doi: 10.4025/actascitechnol.v40i1.37537.

T. L. Scofield, “Math 143-ANOVA,” vol. 2, pp. 1–11, 2018, [Online]. Available: https://www.calvin.edu/~scofield/courses/m143/materials/handouts/anova1And2.pdf

DNV, “Design, development and operation of floating solar photovoltaic systems (Edition March 2021 Amended October 2021),” no. March, 2021.

K. Xu, Z. Gao, and T. Moan, “Effect of hydrodynamic load modeling on the response of floating wind turbines and its mooring system in small water depths,” J. Phys. Conf. Ser., vol. 1104, no. 1, 2018, doi: 10.1088/1742-6596/1104/1/012006.

KESDM, “Panduan Perencanaan Pembangkit Listrik Tenaga Surya PLTS Terapung,” 2021.

Y. Wang, et al., “Hydrodynamic performance analysis of floating photovoltaic systems under wave-current interactions,” *Ocean Engineering*,Vol. 302, p.117632, 2024

K. Lee, at al., “Advanced mooring design for floating solar farms in coastal environment,” *Renewable Energy*, vol. 225, pp. 120245-120256, 2024.

Downloads

Published

2025-12-26

How to Cite

Harahap, D., Rictanata, A. D., & Armono, H. D. (2025). EFFECT OF THE GEOMETRY AND MOORING LINE ON THE HYDRODYNAMICS OF A PONTOON MODEL FOR MARINE FLOATING PHOTOVOLTAICS: Renewable Energy Technology and Engineering . Journal of Energy and Safety Technology (JEST), 8(2), 121–133. https://doi.org/10.11113/jest.v8.210