Synthesis of Zinc Oxide Supported on Titanium Dioxide for Photocatalytic Oxidative Desulfurization of Dibenzothiophene

Authors

  • Hitam, C.N.C. Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Jalil, A.A. Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Triwahyono, S. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jest.v1n1.2

Keywords:

ZnO/TiO2, photocatalytic oxidative desulfurization, dibenzothiophene, electrochemical.

Abstract

Photocatalytic oxidative desulfurization (PODS) has received much attention due to low energy consumption and high efficiency, as well as simple and pollution-free operation. In this study, zinc oxide supported on titanium dioxide (ZnO/TiO2) catalysts were prepared via a simple electrochemical method. The presence of anatase phase TiO2 and wurtzite ZnO was confirmed by X-ray diffraction (XRD) analysis while band gap energies were determined by UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic activity was tested for desulfurization of 100 mg/L dibenzothiophene (DBT). The highest desulfurization rate (2.20 × 10-3 mM/min) was achieved using 1 g/L of 10 wt% ZnO/TiO2 after 2 hr under UV irradiation.

References

Babich, I.V. and Moulijn, J.A. 2003. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel 82: 607–631.

Srivastava, V.C. 2012. An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC 2: 759–783.

Triantafyllidis, K.S. and Deliyanni, E.A. 2014. Desulfurization of diesel fuels: Adsorption of 4,6 DMDBT on different origin and surface chemistry nanoporous activated carbons. Chemical Engineering Journal. 236: 406-414.

Gao, X., Fu, F., Zhang, L., Li, W. 2013. The preparation of Ag-BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene. Physica B 419: 80-85.

Wang, C., Zhu, W., Xu, H., Zhang, M., Chao, Y., Yin, S., Li, H., Wang, J. 2014. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramic International. 40: 11627-11635.

Zhu, W., Li, Y., Dai, B., Xu, H., Wang, C., Chao, Y., Liu, H. 2013. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid. Korean Journal of Chemical Engineering: 1-7.

Jalil, A.A., Satar, M.A.H., Triwahyono, S., Setiabudi, H.D., Kamarudin, N.H.N., Jaafar, N.F., Sapawe, N., Ahamad, R. 2013. Tailoring the current density to enhance photocatalytic activity of CuO/HY for decolorization of malachite green. Journal of Electroanalytical Chemistry. 701: 50–58.

Pekárek, S., Mikeš, J., Krýsa, J. 2015. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General 502: 122–128.

Li, F., Liu, Y., Sun, Z., Zhao, Y., Liu, R., Chen, L., Zhao, D. 2012. Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe2O3 prepared by solution combustion. Catalysis Science and Technology. 2: 1455–1462.

Jaafar, N. F., Jalil, A. A., Triwahyono, S., Shamsuddin, N. 2015. New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: effect of microwave power density on formation of oxygen vacancies and Ti3+ defects. RSC Advances. 5: 90991.

Shifu, C., Wei, Z., Wei, L., Sujuan, Z. 2008. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2. Applied Surface Science. 255: 2478–2484.

Gnanaprakasam, A., Sivakumar, V.M., Sivayogavalli, P.L., Thirumarimurugan, M. 2015. Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Ecotoxicology and Environmental Safety 121: 121–125.

Jaafar, N.F., Jalil, A.A., Triwahyono, S., Muhid, M.N.M., Sapawe, N., Satar, M.A.H., Asaari, H. 2012. Photodecolorization of methyl orange over α-Fe2O3-supported HY catalysts: The effects of catalyst preparation and dealumination. Chemical Engineering Journal. 191: 112– 122.

Jusoh, N.W.C., Jalil, A.A., Triwahyono, S., Setiabudi, H.D., Sapawe, N., Satar, M.A.H., Karim, A.H., Kamarudin, N.H.N., Jusoh, R., Jaafar, N.F., Salamun, N., Efendi, J. 2013. Sequential desilication–isomorphous substitution route to prepare mesostructured silica nanoparticles loaded with ZnO and their photocatalytic activity. Applied Catalysis A: General. 468: 276– 287.

Jusoh, R., Jalil, A.A., Triwahyono, S., Idris, A., Haron, S., Sapawe, N., Jaafar, N.F., Jusoh, N.W.C. 2014. Synthesis of reverse micelle α-FeOOH nanoparticles in ionic liquid as an only electrolyte: Inhibition of electron–hole pair recombination for efficient photoactivity. Applied Catalysis A: General. 469: 33.

Jalil, A.A., Kurono,N., Tokuda,M.2002. Facile synthesis of ethyl 2-arylpropenoates by cross-coupling reaction using electrogenerated highly reactive zinc. Tetrahedron. 58: 7477-7484.

Hitam, C.N.C., Jalil, A.A., Triwahyono, S., Rahman, A.F.A., Hassan, N.S., Khusnun, N.F., Jamian, S.F., Mamat, C.R., Nabgan, W., Ahmad, A. 2018. Effect of carbon-interaction on structure-photoactivity of Cu doped amorphous TiO2 catalysts for visible-light-oriented oxidative desulphurization of dibenzothiophene. Fuel. 216: 407-417.

Hitam, C. N. C., Jalil, A. A., Triwahyono, S., Ahmad, A., Jaafar, N. F., Salamun, N., Fatah, N. A. A., Teh, L. P., Khusnun, N. F., and Ghazali, Z. 2016. Synergistic interactions of Cu and N on surface altered amorphous TiO2 nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene. RSC Advances. 6:76259-76268.

Jaafar, N.F., Jalil, A.A., Triwahyono, S., Efendi, J., Mukti, R.R., Jusoh, R., Jusoh, N.W.C., Karim, A.H., Salleh, N.F.M., Suendo, V. 2015. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Applied Surface Science. 338: 75–84.

Aziz, M.A.A., Jalil, A.A., Triwahyono, S., Saad, M.W.A. 2015. CO2methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies. Chemical Engineering Journal 260: 757–764.

Aazam, E.S. 2014. Visible light photocatalytic degradation of thiophene using Ag-TiO2/multi-walled carbon nanotubes nanocomposite. Ceramics International 40: 6705-6711.

Pérez-Larios, A., Lopez, R., Hernández-Gordillo, A., Tzompantzi, F., Gómez, R., Torres-Guerra, L.M. 2012. Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts. Fuel 100: 139–143.

Todorova, N., Giannakopoulou, T., Pomoni, K., Yu, J., Vaimakis, T., Trapalis, C. 2015. Photocatalytic NOx oxidation over modified ZnO/TiO2 thin films. Catalysis Today. 252: 41-46.

Jusoh, N.W.C., Jalil, A.A., Triwahyono, S., Karim, A.H., Salleh, N.F.,Annuar, N.H.R., Jaafar, N.F., Firmansyah, M.L., Mukti, R.R., Ali, M.W. 2015. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration. Applied Surface Science 330: 10–19.

Juan, Z., Dishun, Z., Liyan, Y., Yongbo, L. 2010. Photocatalytic oxidation dibenzothiophene using TS-1. Chemical Engineering Journal 156: 528–531.

Downloads

Published

2018-08-01

How to Cite

C.N.C., H., A.A., J., & S., T. (2018). Synthesis of Zinc Oxide Supported on Titanium Dioxide for Photocatalytic Oxidative Desulfurization of Dibenzothiophene. Journal of Energy and Safety Technology (JEST), 1(1). https://doi.org/10.11113/jest.v1n1.2

Issue

Section

Articles