INNOVATIVE APPROACHES TO DUAL AXIS SOLAR TRACKING SYSTEMS

Authors

  • R.Mohamad Idris Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor 81310
  • Mohammed Ataalah Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor 81310
  • Ahmed Abed Mohammed College of Computer Science and Information Technology, University of Al-Qadisiyah, Diwaniyah, Iraq

DOI:

https://doi.org/10.11113/jest.v7.183

Abstract

This review discusses the latest design approaches to dual-axis solar trackers by underlining their role in the development of solar energy efficiency and sustainability. Major areas of innovations reviewed include new design proposals, choice of materials, control systems, incorporation of Artificial Intelligence, Internet of Things (IoT), and Machine Learning (ML) in optimizing energy production. A comparison of traditional and modern dual axis tracking systems is made, focusing on how these systems are improved to increase energy yield, improve environmental adaptability, and enhance the durability of the systems. Challenges include increased complexity and cost of modern systems, while future trends will be discussed for predictive analytics, energy storage integration, and smart grid connectivity. With these developments in the background, this review assesses the prospects of dual-axis solar tracking systems as a cornerstone for sustainable energy solutions.

References

. Hafez, A. Z., Yousef, A. M., & Harag, N. M. (2018). Solar tracking systems: Technologies and trackers drive types–A review. Renewable and Sustainable Energy Reviews, 91, 754-782.‏

. Nsengiyumva, W., Chen, S. G., Hu, L., & Chen, X. (2018). Recent advancements and challenges in Solar Tracking Systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250-279.‏

. Nadia, A. R., Isa, N. A. M., & Desa, M. K. M. (2020). Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system. Journal of King Saud University-Engineering Sciences, 32(7), 459-469.‏

. Allamehzadeh, H. (2019, June). An update on solar energy and sun tracker technology with a dual axis sun tracker application. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 2037-2044). IEEE.‏

. Parashar, S., & Tripathi, S. K. (2021). A Review on Solar Tracking System. International Journal of Innovative Research in Engineering & Management, 8(6), 366-369.‏

. Nadia, A. R., Isa, N. A. M., & Desa, M. K. M. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and sustainable energy reviews, 82, 2548-2569.‏

. Racharla, S., & Rajan, K. (2017). Solar tracking system–a review. International journal of sustainable engineering, 10(2), 72-81.‏

. Megha, J. K., Pallavi, K. S., Ramya, N. B., Varsha, G. N., & Shruti, B. M. (2018, May). Arduino based dual axis solar tracking system. In IEEE international conference on electrical and electronic engineering.‏

. Angulo-Calderón, M., Salgado-Tránsito, I., Trejo-Zúñiga, I., Paredes-Orta, C., Kesthkar, S., & Díaz-Ponce, A. (2022). Development and accuracy assessment of a high-precision dual-axis pre-commercial solar tracker for concentrating photovoltaic modules. Applied Sciences, 12(5), 2625.‏

. Acharya, M., & Devraj, S. (2019). Floating solar photovoltaic (FSPV): a third pillar to solar PV sector. New Delhi, India: The Energy and Resources Institute.‏

. Pavlovic, T., Tsankov, P. T., Cekić, N. D., & Radonjić Mitić, I. S. (2020). Photovoltaic solar energy conversion. The sun and photovoltaic technologies, 45-193.‏

. Kaur, T., Mahajan, S., Verma, S., & Gambhir, J. (2016, July). Arduino based low cost active dual axis solar tracker. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (pp. 1-5). IEEE.‏

. Hamad, B. A., Ibraheem, A. M., & Abdullah, A. G. (2020). Design and Practical Implementation of Dual-Axis Solar Tracking System with Smart Monitoring System. Przeglad Elektrotechniczny, 96(10).‏

. Gbadamosi, S. L. (2021). Design and implementation of IoT-based dual-axis solar PV tracking system. Electrotechnical Review, 97(12), 57-62.‏

. Ali, M., Firdaus, A. A., Arof, H., Nurohmah, H., Suyono, H., Putra, D. F. U., & Muslim, M. A. (2021). The comparison of dual axis photovoltaic tracking system using artificial intelligence techniques. IAES Int. J. Artif. Intell, 10(4), 901.‏

. Haider, M. R., Shufian, A., Alam, M. N., Hossain, M. I., Islam, R., & Azim, M. A. (2021, February). Design and implementation of three-axis solar tracking system with high efficiency. In 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 1-5). IEEE.‏

. Abadi, I., Uyuniyah, Q., Fitriyanah, D. N., Jani, Y., & Abdullah, K. (2020). Performance study of maximum power point tracking (mppt) based on type-2 fuzzy logic controller on active dual axis solar tracker. In E3S Web of Conferences (Vol. 190, p. 00016). EDP Sciences.‏

. Stamatescu, I., Făgărăşan, I., Stamatescu, G., Arghira, N., & Iliescu, S. S. (2014). Design and implementation of a solar-tracking algorithm. Procedia Engineering, 69, 500-507.‏

. Merino, S., Martinez, J., Guzman, F., Lara, J. D. D., Guzman, R., Sanchez, F., ... & Sidrach de Cardona, M. (2023). Dynamic Reconfiguration to Optimize Energy Production on Moving Photovoltaic Panels. Sustainability, 15(14), 10858.‏

. Zuhal, E. R., & Marangozoglu, S. (2018, August). New design for solar panel tracking system based on solar calculations. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1042-1045). IEEE.‏

. Stamatescu, I., Stamatescu, G., Calofir, V., Făgărăşan, I., & Iliescu, S. S. (2015, September). Predictive control for photovoltaic tracking optimization. In 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION) (pp. 531-537). IEEE.‏

. Mellit, A., & Kalogirou, S. (2021). Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews, 143, 110889.‏

. Tina, G. M., Ventura, C., Ferlito, S., & De Vito, S. (2021). A state-of-art-review on machine-learning based methods for PV. Applied Sciences, 11(16), 7550.‏

. Yap, K. Y., Sarimuthu, C. R., & Lim, J. M. Y. (2020). Artificial intelligence based MPPT techniques for solar power system: A review. Journal of Modern Power Systems and Clean Energy, 8(6), 1043-1059.‏

. Elsisi, M., Tran, M. Q., Mahmoud, K., Lehtonen, M., & Darwish, M. M. (2021). Deep learning-based industry 4.0 and internet of things towards effective energy management for smart buildings. Sensors, 21(4), 1038.‏

. Karan, E., Asadi, S., Mohtar, R., & Baawain, M. (2018). Towards the optimization of sustainable food-energy-water systems: A stochastic approach. Journal of Cleaner Production, 171, 662-674.‏

. Nižetić, S., Djilali, N., Papadopoulos, A., & Rodrigues, J. J. (2019). Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. Journal of cleaner production, 231, 565-591.‏

. Albatayneh, A., Albadaineh, R., Juaidi, A., Abdallah, R., Zabalo, A., & Manzano-Agugliaro, F. (2022). Enhancing the energy efficiency of buildings by shading with PV panels in semi-arid climate zone. Sustainability, 14(24), 17040.‏

. Abualigah, L., Zitar, R. A., Almotairi, K. H., Hussein, A. M., Abd Elaziz, M., Nikoo, M. R., & Gandomi, A. H. (2022). Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques. Energies, 15(2), 578.‏

. Antonanzas, J., Arbeloa-Ibero, M., & Quinn, J. C. (2019). Comparative life cycle assessment of fixed and single axis tracking systems for photovoltaics. Journal of Cleaner Production, 240, 118016.‏

. Flores-Hernández, D. A., Luviano-Juárez, A., Lozada-Castillo, N., Gutiérrez-Frías, O., Domínguez, C., & Antón, I. (2021). Optimal strategy for the improvement of the overall performance of dual-axis solar tracking systems. Energies, 14(22), 7795.‏

Abed Mohammed, Ahmed, and Putra Sumari. "Hybrid K-means and Principal Component Analysis (PCA) for Diabetes Prediction." International Journal of Computing and Digital Systems 15.1 (2024): 1719-1728.‏

Zaid, Mustafa M. Abd, Ahmed Abed Mohammed, and Putra Sumari. "Classification of Geographical Land Structure Using Convolution Neural Network and Transfer Learning." arXiv preprint arXiv:2411.12415 (2024).‏

Downloads

Published

2024-12-31

How to Cite

Idris, R., Ataalah, M., & Mohammed, A. A. (2024). INNOVATIVE APPROACHES TO DUAL AXIS SOLAR TRACKING SYSTEMS. Journal of Energy and Safety Technology (JEST), 7(2), 112–118. https://doi.org/10.11113/jest.v7.183

Issue

Section

Articles