Operational Conditions affecting Biohythane Production and its Kinetic Model: A Review


  • Puteri Syazwani
  • Mimi Haryani Hassim Universiti Teknologi Malaysia




Biohythane, Anaerobic Digestion, Kinetic Modeling, Hydrogen, Methane


Recently, the global carbon footprint issue is rising significantly due to fossil fuel demand. Biohythane, which is produced from anaerobic digestion is found as an alternative fuel to address this problem. Even though quite a number of reviews have been done before on biohythane production process, an in-depth review particularly on biohythane kinetic study is not available until now. Therefore, this review paper discusses the general anaerobic digestion process of biohythane production as well as its operating factors such as temperature, pH, and microbial population in improving the productivity. In addition, this paper also discusses kinetics modeling, which is commonly used in biohythane production to improve or analyse the effect, relationship, and function of the parameter, as well as to investigate the performance of biohythane during the process. These kinetic models provide a variety of functional goals depending on the experiment's objective, such as determining the kinetics of cell growth, describing the effect of different operating parameters on biohythane production, studying substrate utilisation and inhibition, and product formation. All models are classified in a table by their equation for further reference.


H. van Asselt, “Governing fossil fuel production in the age of climate disruption: Towards an international law of ‘leaving it in the ground,’” Earth Syst. Gov., vol. 9, p. 100118, 2021, doi: 10.1016/j.esg.2021.100118.

J. McKenzie and A. V. Carter, “Stepping stones to keep fossil fuels in the ground: Insights for a global wind down from Ireland,” Extr. Ind. Soc., no. June, p. 101002, 2021, doi: 10.1016/j.exis.2021.101002.

W. Wang, L. W. Fan, and P. Zhou, “Evolution of global fossil fuel trade dependencies,” Energy, vol. 238, p. 121924, 2021, doi: 10.1016/j.energy.2021.121924.

C. H. Lay et al., “Recent trends and prospects in biohythane research: An overview,” Int. J. Hydrogen Energy, vol. 45, no. 10, pp. 5864–5873, 2020, doi: 10.1016/j.ijhydene.2019.07.209.

S. Fu, I. Angelidaki, and Y. Zhang, “In situ Biogas Upgrading by CO2-to-CH4 Bioconversion,” Trends Biotechnol., pp. 1–12, 2020, doi: 10.1016/j.tibtech.2020.08.006.

C. Prashanth Kumar et al., “Bio-Hythane production from organic fraction of municipal solid waste in single and two stage anaerobic digestion processes,” Bioresour. Technol., vol. 294, no. September, p. 122220, 2019, doi: 10.1016/j.biortech.2019.122220.

M. Jelínek, J. Mazancová, D. Van Dung, L. D. Phung, J. Banout, and H. Roubík, “Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: Evidence from Vietnam,” J. Clean. Prod., vol. 292, p. 126007, 2021, doi: 10.1016/j.jclepro.2021.126007.

O. Akande and B. J. Lee, “Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production,” Int. J. Hydrogen Energy, vol. 47, no. 5, pp. 2874–2884, 2022, doi: 10.1016/j.ijhydene.2021.10.258.

A. A. Kovalev, “Energy analysis of the system of two-stage anaerobic processing of liquid organic waste with production of hydrogen- and methane-containing biogases,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 31995–32002, 2021, doi: 10.1016/j.ijhydene.2021.06.187.

A. Banu and Y. Bicer, “Review on COx-free hydrogen from methane cracking: Catalysts, solar energy integration and applications,” Energy Convers. Manag. X, vol. 12, no. July, p. 100117, 2021, doi: 10.1016/j.ecmx.2021.100117.

M. De Falco, G. Santoro, M. Capocelli, G. Caputo, and A. Giaconia, “Hydrogen production by solar steam methane reforming with molten salts as energy carriers: Experimental and modelling analysis,” Int. J. Hydrogen Energy, vol. 46, no. 18, pp. 10682–10696, 2021, doi: 10.1016/j.ijhydene.2020.12.172.

W. Song, L. Ding, M. Liu, J. Cheng, J. Zhou, and Y. Y. Li, “Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1,” Sci. Total Environ., vol. 716, p. 134695, 2020, doi: 10.1016/j.scitotenv.2019.134695.

N. Ketsub et al., “A systematic evaluation of biomethane production from sugarcane trash pretreated by different methods,” Bioresour. Technol., vol. 319, no. September 2020, p. 124137, 2021, doi: 10.1016/j.biortech.2020.124137.

A. M. Shivapuji, S. Dasappa, and L. Rao, Jou rna. Elsevier Ltd., 2022.

W. Wang, Z. Zuo, and J. Liu, “Experimental study of propane/air premixed flame dynamics with hydrogen addition in a meso-scale quartz tube,” J. Energy Inst., vol. 93, no. 4, pp. 1690–1696, 2020, doi: 10.1016/j.joei.2020.02.006.

S. Jain, S. Jain, I. T. Wolf, J. Lee, and Y. W. Tong, “A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste,” Renew. Sustain. Energy Rev., vol. 52, pp. 142–154, 2015, doi: 10.1016/j.rser.2015.07.091.

Rena et al., “Bio-hydrogen and bio-methane potential analysis for production of bio-hythane using various agricultural residues,” Bioresour. Technol., vol. 309, no. March, p. 123297, 2020, doi: 10.1016/j.biortech.2020.123297.

T. P. Vo, C. H. Lay, and C. Y. Lin, “Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor,” Bioresour. Technol., vol. 292, no. July, p. 121869, 2019, doi: 10.1016/j.biortech.2019.121869.

M. Hans and S. Kumar, “ScienceDirect Biohythane production in two-stage anaerobic digestion system,” Int. J. Hydrogen Energy, vol. 44, no. 32, pp. 17363–17380, 2018, doi: 10.1016/j.ijhydene.2018.10.022.

Z. Zhang et al., “Cohesive strategy and energy conversion efficiency analysis of bio-hythane production from corncob powder by two-stage anaerobic digestion process,” Bioresour. Technol., vol. 300, no. December 2019, p. 122746, 2020, doi: 10.1016/j.biortech.2020.122746.

F. Sorgulu and I. Dincer, “Development of a hythane based cogeneration system integrated with gasification and landfill subsystems,” Energy, vol. 215, no. x, 2021, doi: 10.1016/j.energy.2020.119109.

S. Krishnan et al., “Process constraints in sustainable bio-hythane production from wastewater: Technical note,” Bioresour. Technol. Reports, vol. 5, no. June 2018, pp. 359–363, 2019, doi: 10.1016/j.biteb.2018.05.003.

C. Y. Chu, T. P. Vo, and T. H. Chen, “A novel of biohythane gaseous fuel production from pineapple peel waste juice in two-stage of continuously stirred anaerobic bioreactors,” Fuel, vol. 279, no. July, p. 118526, 2020, doi: 10.1016/j.fuel.2020.118526.

R. K. Gopidesi and S. R. Premkartikkumar, “Evaluating the hythane/water diesel emulsion dual fuel diesel engine characteristics at various pilot diesel injection timings,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.07.127.

P. A. Cremonez, J. G. Teleken, T. R. Weiser Meier, and H. J. Alves, “Two-Stage anaerobic digestion in agroindustrial waste treatment: A review,” J. Environ. Manage., vol. 281, no. December 2020, 2021, doi: 10.1016/j.jenvman.2020.111854.

M. T. Nguyen, P. Hung, and T. Vo, “ScienceDirect Effect of food to microorganisms ( F / M ) ratio on biohythane production via single-stage dark fermentation,” Int. J. Hydrogen Energy, vol. 46, no. 20, pp. 11313–11324, 2020, doi: 10.1016/j.ijhydene.2020.06.127.

S. Shanmugam et al., “Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.10.132.

C. E. Gómez Camacho, F. I. Romano, and B. Ruggeri, “Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°,” Energy, vol. 159, pp. 525–533, 2018, doi: 10.1016/j.energy.2018.06.171.

C. Mamimin, P. Kongjan, S. O-Thong, and P. Prasertsan, “Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation,” Int. J. Hydrogen Energy, vol. 44, no. 32, pp. 17224–17237, 2019, doi: 10.1016/j.ijhydene.2019.03.275.

A. Vijin Prabhu, A. R. Sivaram, N. Prabhu, and A. Sundaramahalingam, “A study of enhancing the biogas production in anaerobic digestion,” Mater. Today Proc., vol. 45, pp. 7994–7999, 2021, doi: 10.1016/j.matpr.2020.12.1009.

M. Kumar et al., “A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge,” J. Clean. Prod., vol. 305, p. 127143, 2021, doi: 10.1016/j.jclepro.2021.127143.

S. Tait, P. W. Harris, and B. K. McCabe, “Biogas recovery by anaerobic digestion of Australian agro-industry waste: A review,” J. Clean. Prod., vol. 299, p. 126876, 2021, doi: 10.1016/j.jclepro.2021.126876.

S. Mavridis and E. A. Voudrias, “Using biogas from municipal solid waste for energy production: Comparison between anaerobic digestion and sanitary landfilling,” Energy Convers. Manag., vol. 247, no. September, p. 114613, 2021, doi: 10.1016/j.enconman.2021.114613.

T. Hou, J. Zhao, Z. Lei, K. Shimizu, and Z. Zhang, “Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation,” Sci. Total Environ., vol. 761, p. 143234, 2020, doi: 10.1016/j.scitotenv.2020.143234.

X. Shi, J. Zuo, B. Li, and H. Yu, “Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community,” Bioresour. Technol., vol. 297, no. September 2019, p. 122458, 2020, doi: 10.1016/j.biortech.2019.122458.

S. F. Fu et al., “Enhancing energy recovery from corn straw via two-stage anaerobic digestion with stepwise microaerobic hydrogen fermentation and methanogenesis,” J. Clean. Prod., vol. 247, p. 119651, 2020, doi: 10.1016/j.jclepro.2019.119651.

M. Lafratta et al., “Development and validation of a dynamic first order kinetics model of a periodically operated well-mixed vessel for anaerobic digestion,” Chem. Eng. J., vol. 426, p. 131732, 2021, doi: 10.1016/j.cej.2021.131732.

W. Wongarmat, S. Sittijunda, C. Mamimin, and A. Reungsang, “Acidogenic phase anaerobic digestion of pretreated sugarcane filter cake for co-digestion with biogas effluent to enhance the methane production,” Fuel, vol. 310, no. PC, p. 122466, 2022, doi: 10.1016/j.fuel.2021.122466.

A. A. Kovalev et al., “Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode,” Renew. Energy, vol. 181, pp. 966–977, 2022, doi: 10.1016/j.renene.2021.09.097.

G. Cazaudehore, F. Monlau, C. Gassie, A. Lallement, and R. Guyoneaud, “Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions,” Sci. Total Environ., vol. 784, p. 146972, 2021, doi: 10.1016/j.scitotenv.2021.146972.

S. A. Abdur Rawoof, P. S. Kumar, D. V. N. Vo, T. Devaraj, and S. Subramanian, “Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review,” Renew. Sustain. Energy Rev., vol. 152, no. August, p. 111700, 2021, doi: 10.1016/j.rser.2021.111700.

T. C. D’ Silva et al., “Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 151, no. September 2020, 2021, doi: 10.1016/j.rser.2021.111536.

C. Amodeo, S. Hattou, P. Buffiere, and H. Benbelkacem, “Temperature phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) and digested sludge (DS): Effect of different hydrolysis conditions,” Waste Manag., vol. 126, pp. 21–29, 2021, doi: 10.1016/j.wasman.2021.02.049.

Y. Zhao et al., “Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion,” Bioresour. Technol., vol. 290, no. April, p. 121660, 2019, doi: 10.1016/j.biortech.2019.121660.

C. He, T. Liu, H. Ou, S. Yuan, Z. Hu, and W. Wang, “Bioresource Technology Coupling granular activated carbon and exogenous hydrogen to enhance anaerobic digestion of phenol via predominant syntrophic acetate oxidation and hydrogenotrophic methanogenesis pathway,” Bioresour. Technol., vol. 323, no. November 2020, p. 124576, 2021, doi: 10.1016/j.biortech.2020.124576.

B. Chatterjee and D. Mazumder, “Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review,” Renew. Sustain. Energy Rev., vol. 104, no. November 2018, pp. 439–469, 2019, doi: 10.1016/j.rser.2019.01.026.

Z. N. Akhlisah, R. Yunus, Z. Z. Abidin, B. Y. Lim, and D. Kania, “Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals,” Biomass and Bioenergy, vol. 144, no. November 2020, p. 105901, 2021, doi: 10.1016/j.biombioe.2020.105901.

M. F. M. A. Zamri et al., “A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste,” Renew. Sustain. Energy Rev., vol. 137, no. November 2020, p. 110637, 2021, doi: 10.1016/j.rser.2020.110637.

I. Syaichurrozi, M. F. Basyir, R. M. Farraz, and R. Rusdi, “A preliminary study: Effect of initial pH and Saccharomyces cerevisiae addition on biogas production from acid-pretreated Salvinia molesta and kinetics,” Energy, vol. 207, 2020, doi: 10.1016/j.energy.2020.118226.

M. Hans and S. Kumar, “Biohythane production in two-stage anaerobic digestion system,” Int. J. Hydrogen Energy, vol. 44, no. 32, pp. 17363–17380, 2019, doi: 10.1016/j.ijhydene.2018.10.022.

M. Qian et al., “Efficient acetogenesis of anaerobic co-digestion of food waste and maize straw in a HSAD reactor,” Bioresour. Technol., vol. 283, no. March, pp. 221–228, 2019, doi: 10.1016/j.biortech.2019.03.032.

L. Ding, Y. Chen, Y. Xu, and B. Hu, “Improving treatment capacity and process stability via a two-stage anaerobic digestion of food waste combining solid-state acidogenesis and leachate methanogenesis/recirculation,” J. Clean. Prod., vol. 279, 2021, doi: 10.1016/j.jclepro.2020.123644.

S. A. Abdur Rawoof, P. S. Kumar, D. V. N. Vo, T. Devaraj, and S. Subramanian, “Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review,” Renew. Sustain. Energy Rev., vol. 152, no. September, p. 111700, 2021, doi: 10.1016/j.rser.2021.111700.

E. Nie, P. He, H. Zhang, L. Hao, L. Shao, and F. Lü, “How does temperature regulate anaerobic digestion ?,” Renew. Sustain. Energy Rev., vol. 150, no. June, p. 111453, 2021, doi: 10.1016/j.rser.2021.111453.

B. de Diego-Díaz, F. J. Peñas, and J. Fernández- Rodríguez, “Sustainable management of lignocellulosic wastes: Temperature strategies for anaerobic digestion of artichoke,” J. Clean. Prod., vol. 280, 2021, doi: 10.1016/j.jclepro.2020.124479.

H. Chen and S. Chang, “Bioresource Technology Dissecting methanogenesis for temperature-phased anaerobic digestion : Impact of temperature on community structure , correlation , and fate of methanogens,” Bioresour. Technol., vol. 306, no. March, p. 123104, 2020, doi: 10.1016/j.biortech.2020.123104.

K. Anand, A. P. Mittal, and B. Kumar, “Modelling and simulation of dual heating of substrate with centralized temperature control for anaerobic digestion process,” J. Clean. Prod., vol. 325, no. October, p. 129235, 2021, doi: 10.1016/j.jclepro.2021.129235.

T. T. Nguyen, C. Y. Chu, and C. M. Ou, “Pre-treatment study on two-stage biohydrogen and biomethane productions in a continuous co-digestion process from a mixture of swine manure and pineapple waste,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.05.264.

U. Egwu, K. Onyelowe, S. Tabraiz, E. Johnson, and A. D. Mutshow, “Investigation of the effect of equal and unequal feeding time intervals on process stability and methane yield during anaerobic digestion grass silage,” Renew. Sustain. Energy Rev., vol. 158, no. December 2021, p. 112092, 2022, doi: 10.1016/j.rser.2022.112092.

N. Jin et al., “Comparison of effects of ferric nitrate additions in thermophilic, mesophilic and psychrophilic aerobic digestion for sewage sludge,” J. Taiwan Inst. Chem. Eng., vol. 67, pp. 346–354, 2016, doi: 10.1016/j.jtice.2016.07.046.

S. Wang, F. Ma, W. Ma, P. Wang, G. Zhao, and X. Lu, “Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system,” Water (Switzerland), vol. 11, no. 1, 2019, doi: 10.3390/w11010133.

M. L. Thi Nguyen, P. C. Hung, T. P. Vo, C. H. Lay, and C. Y. Lin, “Effect of food to microorganisms (F/M) ratio on biohythane production via single-stage dark fermentation,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.06.127.

B. Basak, S. Saha, P. K. Chatterjee, A. Ganguly, S. Woong Chang, and B. H. Jeon, “Pretreatment of polysaccharidic wastes with cellulolytic Aspergillus fumigatus for enhanced production of biohythane in a dual-stage process,” Bioresour. Technol., vol. 299, no. October 2019, p. 122592, 2020, doi: 10.1016/j.biortech.2019.122592.

T. P. Vo, C. H. Lay, and C. Y. Lin, “Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor,” Bioresour. Technol., vol. 292, no. June, p. 121869, 2019, doi: 10.1016/j.biortech.2019.121869.

Q. Feng, Y. C. Song, D. H. Kim, M. S. Kim, and D. H. Kim, “Influence of the temperature and hydraulic retention time in bioelectrochemical anaerobic digestion of sewage sludge,” Int. J. Hydrogen Energy, vol. 44, no. 4, pp. 2170–2179, 2019, doi: 10.1016/j.ijhydene.2018.09.055.

V. Kinnunen, R. Craggs, and J. Rintala, “Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor,” Water Res., vol. 57, pp. 247–257, 2014, doi: 10.1016/j.watres.2014.03.043.

H. Chen et al., “Chemosphere Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation,” Chemosphere, vol. 274, p. 129787, 2021, doi: 10.1016/j.chemosphere.2021.129787.

M. Mellyanawaty et al., “Enrichment of thermophilic methanogenic microflora from mesophilic waste activated sludge for anaerobic digestion of garbage slurry,” J. Biosci. Bioeng., vol. 132, no. 6, pp. 630–639, 2021, doi: 10.1016/j.jbiosc.2021.09.005.

W. Zhang, X. Wang, W. Xing, R. Li, and T. Yang, “Responses of anaerobic digestion of food waste to coupling effects of inoculum origins, organic loads and pH control under high load: Process performance and microbial characteristics,” J. Environ. Manage., vol. 279, no. December 2020, p. 111772, 2021, doi: 10.1016/j.jenvman.2020.111772.

T. Zhang, C. Mao, N. Zhai, X. Wang, and G. Yang, “Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk,” Waste Manag., vol. 35, pp. 119–126, 2015, doi: 10.1016/j.wasman.2014.09.004.

S. Ponsá, I. Ferrer, F. Vázquez, and X. Font, “Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55 °C) of sewage sludge: Influence of pH and solid content,” Water Res., vol. 42, no. 14, pp. 3972–3980, 2008, doi: 10.1016/j.watres.2008.07.002.

M. A. Latif, C. M. Mehta, and D. J. Batstone, “Influence of low pH on continuous anaerobic digestion of waste activated sludge,” Water Res., vol. 113, pp. 42–49, 2017, doi: 10.1016/j.watres.2017.02.002.

S. Begum, G. R. Anupoju, S. Sridhar, S. K. Bhargava, V. Jegatheesan, and N. Eshtiaghi, “Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production,” Bioresour. Technol., vol. 251, no. November 2017, pp. 364–373, 2018, doi: 10.1016/j.biortech.2017.12.069.

M. J. Oosterkamp et al., “Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage,” Bioresour. Technol. Reports, vol. 7, no. May, p. 100254, 2019, doi: 10.1016/j.biteb.2019.100254.

X. Shi et al., “Genomic dynamics of full-scale temperature-phased anaerobic digestion treating waste activated sludge : Focusing on temperature differentiation,” Waste Manag., vol. 87, pp. 621–628, 2019, doi: 10.1016/j.wasman.2019.02.041.

A. Rabii, S. Aldin, Y. Dahman, and E. Elbeshbishy, “A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration,” Energies, vol. 12, no. 6, 2019, doi: 10.3390/en12061106.

C. Aarti, A. Khusro, P. Agastian, N. M. Darwish, and D. A. Al Farraj, “Molecular diversity and hydrolytic enzymes production abilities of soil bacteria,” Saudi J. Biol. Sci., vol. 27, no. 12, pp. 3235–3248, 2020, doi: 10.1016/j.sjbs.2020.09.049.

A. Groher and D. Weuster-Botz, “Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation,” J. Biotechnol., vol. 228, pp. 82–94, 2016, doi: 10.1016/j.jbiotec.2016.04.032.

P. Ryan, C. Forbes, S. McHugh, C. O’Reilly, G. T. A. Fleming, and E. Colleran, “Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions,” Water Res., vol. 44, no. 14, pp. 4261–4269, 2010, doi: 10.1016/j.watres.2010.05.033.

K. Promnuan, T. Higuchi, T. Imai, P. Kongjan, A. Reungsang, and S. O-Thong, “Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion,” Int. J. Hydrogen Energy, vol. 45, no. 1, pp. 263–274, 2020, doi: 10.1016/j.ijhydene.2019.10.237.

H. Zhao, Y. Zheng, S. Zhou, L. Liu, J. Zhou, and S. Sun, “Characteristics of methane and bioflocculant production by Methanosarcina spelaei RK-23,” Int. J. Hydrogen Energy, vol. 45, no. 20, pp. 11569–11576, 2020, doi: 10.1016/j.ijhydene.2020.02.088.

Z. K. Liew et al., “Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation,” Renew. Energy, vol. 179, pp. 766–777, 2021, doi: 10.1016/j.renene.2021.07.073.

W. Li et al., “Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion,” Renew. Energy, vol. 157, pp. 1081–1088, 2020, doi: 10.1016/j.renene.2020.04.035.

R. Bedoić et al., “Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production,” Renew. Sustain. Energy Rev., vol. 130, no. May, 2020, doi: 10.1016/j.rser.2020.109951.

W. Windarto, E. Eridani, and U. D. Purwati, “A new modified logistic growth model for empirical use,” Commun. Biomath. Sci., vol. 1, no. 2, p. 122, 2018, doi: 10.5614/cbms.2018.1.2.5.

M. C. Groff, G. Scaglia, M. Gaido, D. Kassuha, O. A. Ortiz, and S. E. Noriega, “Kinetic modeling of fungal biomass growth and lactic acid production in Rhizopus oryzae fermentation by using grape stalk as a solid substrate.,” Biocatal. Agric. Biotechnol., vol. 39, no. March 2021, p. 102255, 2021, doi: 10.1016/j.bcab.2021.102255.

M. M. Abdel daiem, A. Hatata, O. H. Galal, N. Said, and D. Ahmed, “Prediction of biogas production from anaerobic Co-digestion of Waste Activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network,” Renew. Energy, vol. 178, pp. 226–240, 2021, doi: 10.1016/j.renene.2021.06.050.

K. Wang, S. Yun, T. Xing, B. Li, Y. Abbas, and X. Liu, “Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization,” Bioresour. Technol., vol. 323, no. December 2020, p. 124571, 2021, doi: 10.1016/j.biortech.2020.124571.

H. Şenol, “Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves,” Bioresour. Technol., vol. 300, no. October 2019, 2020, doi: 10.1016/j.biortech.2019.122660.

V. Gadhamshetty, Y. Arudchelvam, N. Nirmalakhandan, and D. C. Johnson, “Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model,” Int. J. Hydrogen Energy, vol. 35, no. 2, pp. 479–490, 2010, doi: 10.1016/j.ijhydene.2009.11.007.

N. Seekao, S. Sangsri, N. Rakmak, W. Dechapanya, and C. Siripatana, “Co-digestion of palm oil mill effluent with chicken manure and crude glycerol: biochemical methane potential by monod kinetics,” Heliyon, vol. 7, no. 2, p. e06204, 2021, doi: 10.1016/j.heliyon.2021.e06204.

Y. Liu, “A simple thermodynamic approach for derivation of a general Monod equation for microbial growth,” Biochem. Eng. J., vol. 31, no. 1, pp. 102–105, 2006, doi: 10.1016/j.bej.2006.05.022.

M. J. Veshareh and H. M. Nick, “Growth kinetic and transport of mixed microbial cultures in subsurface environments,” Adv. Water Resour., vol. 153, no. April 2020, p. 103929, 2021, doi: 10.1016/j.advwatres.2021.103929.

A. M. Som and A. Yahya, “Kinetics and performance study of ultrasonic-assisted membrane anaerobic system using Monod Model for Palm Oil Mill Effluent (POME) treatment,” Clean. Eng. Technol., vol. 2, no. March, p. 100075, 2021, doi: 10.1016/j.clet.2021.100075.

W. Kong, S. Huang, F. Shi, J. Zhou, Y. Feng, and Y. Xiao, “Study on Microcystis aeruginosa growth in incubator experiments by combination of Logistic and Monod functions,” Algal Res., vol. 35, no. May, pp. 602–612, 2018, doi: 10.1016/j.algal.2018.10.005.

S. Emebu, J. Pecha, and D. Janáčová, “Review on anaerobic digestion models: Model classification & elaboration of process phenomena,” Renew. Sustain. Energy Rev., vol. 160, no. February, 2022, doi: 10.1016/j.rser.2022.112288.

A. Sedighi, M. Karrabi, B. Shahnavaz, and M. Mostafavinezhad, “Bioenergy production from the organic fraction of municipal solid waste and sewage sludge using mesophilic anaerobic co-digestion: An experimental and kinetic modeling study,” Renew. Sustain. Energy Rev., vol. 153, no. October 2021, p. 111797, 2022, doi: 10.1016/j.rser.2021.111797.

M. Lafratta et al., “Development and validation of a dynamic first order kinetics model of a periodically operated well-mixed vessel for anaerobic digestion,” Chem. Eng. J., vol. 426, p. 131732, 2021, doi: 10.1016/j.cej.2021.131732.

E. K. Armah, M. Chetty, and N. Deenadayalu, “Biogas production from sugarcane bagasse with South African industrial wastewater and novel kinetic study using response surface methodology,” Sci. African, vol. 10, p. e00556, 2020, doi: 10.1016/j.sciaf.2020.e00556.

T. Kunatsa and X. Xia, “A review on anaerobic digestion with focus on the role of biomass co-digestion , modelling and optimisation on biogas production and enhancement,” Bioresour. Technol., p. 126311, 2021, doi: 10.1016/j.biortech.2021.126311.

T. R. W. Meier, P. A. Cremonez, T. C. Maniglia, S. C. Sampaio, J. G. Teleken, and E. A. da Silva, “Production of biohydrogen by an anaerobic digestion process using the residual glycerol from biodiesel production as additive to cassava wastewater,” J. Clean. Prod., vol. 258, 2020, doi: 10.1016/j.jclepro.2020.120833.

M. Mushtaq, Zeshan, M. Zeeshan, I. Nawaz, and M. Hassan, “Effect of low levels of oxytetracycline on anaerobic digestion of cattle manure,” Bioresour. Technol., vol. 349, no. October 2021, p. 126894, 2022, doi: 10.1016/j.biortech.2022.126894.

H. E. Gulsen Akbay, N. Dizge, and H. Kumbur, “Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment,” Bioresour. Technol., vol. 340, no. July, p. 125688, 2021, doi: 10.1016/j.biortech.2021.125688.




How to Cite

Mohd Kopli, P. N. S. ., & Hassim, M. H. (2023). Operational Conditions affecting Biohythane Production and its Kinetic Model: A Review. Journal of Energy and Safety Technology (JEST), 5(2), 109–121. https://doi.org/10.11113/jest.v5n2.126