Energy Efficiency In Optical-Wireless Access Network Using Dynamic Bandwidth Allocation


  • Mubarak Asafa Osun State University, Osogbo.
  • Hammed Oyebamiji Lasisi
  • Olawumi O. O.
  • Engr. Awofolaju T. T.



Energy Efficiency; Optical-Wireless Network; Dynamic Bandwidth Allocation; Passive Optical Network; Long Term Evolution-Advanced.


High capacity networks are needed for enormous quantity of internet traffic, which is driven by both the exponential growth of the number of people using the internet and the ongoing introduction of new high-bandwidth requiring applications. Combining optical and wireless technologies is a new and promising access network solution. The energy efficiency of telecommunication networks is therefore attracting increasing attention today than in the past. This study is aimed at evaluating energy efficiency of optical-wireless access network which combines Passive Optical Network (PON) and Long Term Evolution - Advanced (LTE-A) networks into one. The network was designed using Optimum Network Engineering Tool (OPNET) modeler software. Traffic was generated using inbuilt tools provided in the OPNET modeler software. Dynamic Bandwidth Allocation (DBA) algorithm was applied on the network and simulation was carried out using the simulation tool provided by OPNET to evaluate the effect of the DBA algorithm on the energy consumption and efficiency in the network. The findings showed energy utilization of 430 watt-second when DBA algorithm was applied on the access network as against 700 watt-second when it was not activated. This shows a 38.6% energy conservation. It was concluded that with the application of energy saving techniques to combined optical-wireless access network, substantial energy could be conserved even in the presence of heavy traffic without compromising the quality of service of the access network.


Viavi. 2020. PON, Retrieved April 2020, from

Asiabanpour, B., A. Estrada, R. Ramirez and M. S. Downey. 2018. Optimizing Natural Light Distribution for Indoor Plant Growth Using PMMA Optical Fiber: Simulation and Empirical Study. Journal of Renewable Energy.

Passive Optical Network. 2020. In Wikipedia.

Newwavedv 2020. "What is EPON", Retrieved May 2020, from

Effenberger, F., D. Cleary, O. Haran, G. Kramer, R. Li, M. Oron, and T. Pfeiffer. 2007. An Introduction to PON Technologies [Topics in Optical Communications], IEEE Communications Magazine, 45(3): S17 – S25.

Su, Y., Y. Tain, E. Wong, N. Nadarajah and C. C. K. Chan. 2008. All-optical Virtual Private Network in Passive Optical Networks. Laser & Photonics Reviews, 2(6): 460 – 479.

Baker, C. C., E. J. Friebele, A. A. Burdett, D. L. Rhonehouse, J. Fontana, W. Kim, S. R. Bowman, L. B. Shaw, J. Sanghera, J. Zhang, R. Pattnaik, M. Dubinskii, J. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simakov and J. Haub. 2017. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths. Optics Express, 25(12): 13903 - 13915. doi:10.1364/oe.25.01390

Sato, T., D. M. Kammen, B. Duan, M. Macuha, Z. Zhou, J. Wu, M. Tariq, S. A. Asfaw. 2015. "Smart Grid Standards". Wiley.

Suh, Y., K. Kim, A. Kim and Y. Shin. 2015. A Study on Impact of Wired Access Networks for Green Internet. Journal of Network and Computer Applications, 57(C): 156 – 168.

Chen, M., Y. Miao, and I. Humar. 2019. OPNET IoT Simulation. In OPNET IoT Simulation.

Dorathy, I., and M. Chandrasekaran. 2018. Simulation tools for mobile ad hoc networks: A survey. Journal of Applied Research and Technology, 16(5):437-445. doi:10.22201/icat.16656423.2018.16.5.739

Tetcos. 2021. Long Term Evolution / Long Term Evolution – Advanced, Retrieved March 2021, from

Maier, M. 2014. Fiber-Wireless (FiWi) Broadband Access Networks in an Age of Convergence: Past, Present, and Future. Advances in Optics, 1–23.

Chowdhury, R., A. Shami and K. Almustafa. 2014. Designing of Next-Generation Hybrid Optical- Wireless Access Network. In The 14th IEEE International Conference on Innovations for Community Systems (I4CS). doi:10.1109/I4CS.2014.6860546

Shaddad, R. Q., A. B. Mohammad, S. A. Al-Gailani, A. M. Al-hetar and M. A. Elmagzoub. 2014. A survey on access technologies for broadband optical and wireless networks. Journal of Network and Computer Application, 459 - 472. doi:10.1016/j/jnca.2014.01.004

Kramer, G., M. De Andrade, R. Roy, and P. Chowdhury. 2012. Evolution of Optical Access Networks: Architectures and Capacity Upgrades. Proceedings of the IEEE, 100(5): 1188 – 1196.

El Khadiri, K., O. Labouidya, N. Elkamoun and R. Hilal. 2018. Performance evaluation of IPv4/IPv6 transition mechanisms for real-time applications using OPNET Modeler. International Journal of Advanced Computer Science and Applications, 9(4):387-392. doi:10.14569/IJACSA.2018.090454

Ricciardi, S., F. Palmieri, U. Fiore, A. Castiglione and G. S. Boada. 2013. Modeling energy consumption in next-generation wireless access-over-WDM networks with hybrid power sources. Journal of Mathematical and Computer Modelling, 58(5-6): 1389-1404. doi: 10.1016/j.mcm.2012.12.04

Liu, Y., L. Guo, L. Zhang and J. Yang. 2014. A New Integrated Energy-Saving Scheme in Green Fiber-Wireless (Fiwi) Access Network, Science China Information Sciences, 57(6): 1 – 15.

Gowda, A. S., A. R. Dhaini, L. G. Kazovsky, H. Yang, S. T. Abraha and A. Ngoma. 2014. Towards green optical/wireless in-building networks: Radio-over-fiber. Journal of Lightwave Technology, 32(20): 3545 - 3556. doi:10.1109/JLT.2014.2315960

Aleksic, S., M. Deruyck and W. Joseph. 2013. Energy efficiency of optically backhauled LTE: a case study of Vienna. International Conference on Electromagnetics in Advanced Application (ICEAA-IEEE). Turin, Italy,. doi:10.1109/ICEAA.2013.6632263

Ramli, A., N. Zulkifli and S. M. Idrus. 2017. Power Consumption Modeling and Analysis of Integrated Optical-Wireless Access Network. International Journal of Electrical and Computer Engineering, 7(6): 3475 - 3483.

Ismail, N. A., N. A. M. Zin, S. M. Idrus, F. Iqbal and R. A. Butt. 2018. Review of Dynamic Bandwidth Allocation and Energy Efficient Schemes for ITU PON. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Indonesia. 131 -134, doi: 10.1109/ICRAMET.2018.8683920

Thangappan T., E. Manimaran, A. Arasu, R. Arulprakash and J. S. Harish Ganapathi. 2020. Review of Dynamic Bandwidth Allocation in GPON. Internation Conference on Communication and Signal Processing (ICCSP), Chennai, India. 884 – 888, doi:10.1109/ICCSP48568.2020.9182151

Thangappan T., B. Therese, S. Adi and S. S. Gadda. 2020. Review on Dynamic Bandwith Allocation of GPON and EPON. Journal of Electronic Science and Technology, 18(4):

Merayo, N., P. Pavon-Marino, J. C. Aguado, R. J. Duran, F. Burrull and V. Bueno-Delgado, 2017. Fair bandwidth allocation algorithm for PONs based on network utility maximization. Journal of Optical Communnications and Networking, 9(1): 75 – 86, doi: 10.1364/JOCN.9.000075

Qi-Yu Z., L. Bin and W. Run-ze. 2012. A dynamic bandwidth allocation scheme for GPON based on traffic prediction. 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2043-2046, doi: 10.1109/FSKD.2012.6234355

Feknous M., A. Gravey, B. Le Guyader, and S. Gosselin, 2015. Status reporting versus non status reporting dynamic bandwidth allocation. 2015 International Conference on the Network of the Future. NOF, Montreal. doi: 10.1109/NOF.2015.7333289




How to Cite

Asafa, M., Lasisi, H. O., Olawumi, O. O., & Awofolaju, T. T. (2023). Energy Efficiency In Optical-Wireless Access Network Using Dynamic Bandwidth Allocation. Journal of Energy and Safety Technology (JEST), 5(2), 21–29.