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Abstract 

In this study, the co-culture bacteria of Clostridium sporogenes and Enterobacter aerogenes were immobilized onto two 

different support materials: loofah sponge and activated carbon (AC) sponge. Both immobilized co-cultures were used in 

the batch fermentation of pineapple residues for biohydrogen production. The performance of both immobilized loofah 

and AC sponge was compared with free cell (FC) co-culture in terms of biohydrogen cumulative production and 

production rate within 48 hr fermentation time. It was found that the immobilized co-culture on AC sponge produced the 

highest rate of biohydrogen of 35.9 mmol/hr/Lsubstrate compared to loofah and FC co-culture after 24 hr fermentation. 

However, in terms of preservation of biohydrogen production rate, loofah as a support showed better consistency in terms 

of performance for 48 hr fermentation time compared to AC. This study also showed that the pH of substrate has a relation 

to the optical density (OD600) reduction of the bacteria, which could affect biohydrogen production rate. 
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1.0 INTRODUCTION 

Biohydrogen is an alternative energy that can be produced by biological routes such as fermentation from renewable 

feedstock like agricultural waste, food waste, industrial waste, and municipal waste. Biological process might have a 

lower production rate than other processes but it is worthy as the operational cost is much lower with better environmental 

benefits. As fermentation process can be carried out at ambient pressure and temperature conditions, energy consumption 

is not intensive; hence, the process holds high potential to be commercialized in future energy production. 

There are two main routes of fermentation: aerobic (presence of oxygen) and anaerobic (absence of oxygen). Compared 

to aerobic, anaerobic fermentation commonly has better performance of organic compound conversion to hydrogen with 

the utilization of bacteria through acidogenesis and acetogenesis processes. Anaerobic microorganisms such as anaerobic 

fermentative bacteria are commonly used in anaerobic fermentation because they are able to utilize carbon substrates to 

release hydrogen and also byproducts [1]. Hydrogen-producing bacteria such as Clostridium sp. is the most well-known 

bacteria that is suitable for higher biohydrogen production [2]. In order to maximize the production in short fermentation 

time, co-culture technique is the best option as it may improve culturing and cell behavior [3, 4]. 
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Co-culture bacteria can be used either in a free or an immobilized form on suitable support materials. Currently, 

immobilized cell has been widely used for hydrogen production either in laboratory or industrial scale as an alternative 

to enhance microorganisms’ activity in a fermentation system [2–17]. The most applied method for immobilization is cell 

entrapment [4–8, 16, 18, 20–23], in which microorganisms are enclosed in a porous matrix to allow cell-substrate 

diffusion and cells-products away from the material utilized. The advantages of immobilized cultures include reducing 

risk of contamination [21], higher metabolic activity [4], reusable [4, 5], and easier separation of solids and liquids [22].  

In this study of the production of biohydrogen, immobilized method was applied to sustain the bacteria for the maximum 

utilization of pineapple substrate. Two types of support materials, loofah sponge and activated carbon (AC) sponge, were 

used for the new combination co-culture of Enterobacter aerogenes (E. aerogenes) and Clostridium sporogenes (C. 

sporogenes). E. aerogenes was selected because it is a facultative anaerobe that can survive if oxygen is present. E. 

aerogenes commonly utilizes oxygen and simultaneously provides anaerobic condition to a strict anaerobe, C. 

sporogenes. The main objective of this work is to compare biohydrogen production of the immobilized co-culture on both 

support materials with free co-culture. The optical density of bacteria and pH condition of substrate were monitored to 

relate both factors to biohydrogen performance. 

 

2.0 METHODOLOGY 

2.1 Pineapple Substrate Preparation 

Fresh pineapple waste was obtained from fruit stalls at a local market. In this experiment, only pineapple peels were used 

and subjected to steam heat pretreatment (autoclaved). The pineapple peels were chopped into small pieces. Afterwards, 

the chopped pineapple waste was crushed using a steel blender (Waring Commercial Blender) with distilled water in the 

ratio of 1:2. Next, the mixture was filtrated to obtain the hydrolysate or extract for characterization analysis. After 

characterization, the hydrolysate was stored in a refrigerator at 4 °C and restored to ambient temperature (25 °C) prior to 

use. The substrate was neutralized to pH 7 every time before it was mixed with inoculum for fermentation. 

 

2.2 Co-culture and Immobilization Preparation 

Facultative anaerobe (E. aerogenes–ATCC 13048) and a strict anaerobe (C. sporogenes – ATCC 19404) purchased from 

Microbiologics (Saint Cloud, USA) were utilized as the co-culture to perform fermentation process. Commercial loofah 

sponge and AC sponge were used as the support materials to retain the co-culture bacteria. For inoculum (co-culture) 

preparation, both bacteria were activated onto the agar before cultivated into nutrient broth. Next, approximately 0.2 ± 

0.1 (OD600) of E. aerogenes and C. sporogenes were mixed carefully and aseptically, and then incubated for 24 hr 

(overnight) before immersion of the support materials. Meanwhile, loofah and activated carbon (AC) sponges were cut 

into pieces (1 ± 0.2 cm × 1 ± 0.2 cm) and soaked in boiling water for 30 min. After that, the sponges were washed under 

tap water before left in distilled water for 24 hr (changed 3 to 4 times). This is essential to remove all fine suspended 

particles [8]. Next, the sponges were dried in an oven at 70 °C overnight before dried uniformly in a desiccator. The 

sponges were then soaked inside 90 ml of nutrient broth (30% of working volume) and incubated for another 24 hr at 130 

rpm and 37 °C prior to use. The sponges were mixed with the substrate for further fermentation. The inoculum was 

directly used or mixed with pineapple substrate for mobilize co-culture set-up without soaking any sponge for 

immobilization. 

 

2.3 Experimental Condition (Batch Set-Up) 

The schematic diagram of experimental setup is shown in Figure 1. The fermentation of collected pineapple waste was 

carried out in a 500 ml Dreschel bottle with the working volume of 300 ml. 210 ml of pineapple waste was first added to 

a 500 ml Dreschel bottle and the inoculum or/and immobilized sponges were then added to the substrate. The initial pH 

of the substrate was adjusted using 0.5 M sodium hydroxide (NaOH) to achieve the initial pH of 7. Nitrogen sparging 

was applied to provide anaerobic condition for the fermentation process and the bottles were sealed and placed in a water 

bath to maintain the culture medium at 33 ± 1 °C. Mixing was provided by a stirring magnetic bar in the bottle. In this 

experiment, gas purging was only applied at the early stage of the set-up and manual mixing was applied at every 12 hr 

interval. The volume of biogas collected was read from the scales on the gas collection measuring cylinder through water 

displacement method at 12 hr interval. The volume of water displaced in the measuring cylinder was determined as the 

volume of biohydrogen produced whereas the gas captured in polyvinylidene fluoride (PVDF) gas bag was analyzed 

using gas chromatography (Agilent Technologies, 6890N, Network GC System) equipped with a thermal conductivity 

detector (TCD) to obtain the composition and amount of biohydrogen produced. 
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Figure 1. Schematic diagram of the experimental set up 

 

 

3.0 RESULTS AND DISCUSSION 

Figure 2 presents cumulative biohydrogen production of immobilized activated carbon (AC), loofah sponge (LS), and 

free cell (FC) throughout the experiment. AC and LS reached the maximum production during 48 hr fermentation time 

while FC reached the maximum cumulative biohydrogen at 36 hr and decreased slightly at 48 hr fermentation time. For 

FC, during 48 hr fermentation time, the volume of biogas captured increased but the biohydrogen percentage was low 

due to high content of carbon dioxide (CO2). The decrement of biohydrogen production might be due to exhausted nutrient 

that potentially occurred after a certain extended period. In this stage, a metabolic shift of biohydrogen-producing 

pathways to biohydrogen-inhibiting biochemical reaction occurred [24]. Biohydrogen formation could be reduced by the 

formation of fatty acid with high CO2 content in biogas composition. 

 

 

 
 

Figure 2. Cumulative biohydrogen production for different immobilized support materials 

 

 

Figure 3 shows the biohydrogen production rate obtained for FC co-culture, as well as immobilized co-culture onto LS 

and AC sponge. As can be seen in Fig. 3, the highest rate obtained using immobilized AC sponge was obtained at 35 

mmol/hr/Lsubstrate after 24 hr fermentation time. However, the production rate dropped approximately 22% after 36 hr and 

further decreased by approximately 16% towards the end of fermentation. Meanwhile, immobilized LS facilitated a 

consistent increase of biohydrogen production rate from only 7.86 mmol/hr/Lsubstrate at the early stage and reached 21.54 

mmol/hr/Lsubstrate after 48 hr fermentation time, which is up to 60% increment. For FC co-culture, the highest rate was 

achieved at 12 hr fermentation time and dropped at every interval until the end of observation. The different production 
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trends by immobilized co-culture on the support materials of AC and LS might be due to the retention on the sponge [8]. 

It could also be due to imperfect immobilized cell loading amount that resulted in poor mass transfer and led to poor 

biohydrogen production [25].  

 

 
 

Figure 3. Biohydrogen production rate for different immobilized support materials 

  

 

The relation of biohydrogen production rate with optical density (OD600) of bacteria and pH changes of the substrate was 

studied, and this is shown in Figure 4. The graphs showed that the highest OD concentration of the co-culture was mostly 

achieved after 24 hr fermentation time and afterwards they started to reach the stationary phase. This indicated the growth 

of the bacteria during the middle of exponential stage and started to utilize the pineapple substrate, which produced high 

amount of biohydrogen. Slightly lower biohydrogen started to be produced as the inoculum grew slightly before reaching 

the stationary phase.  

In addition, the production also remained high during the acidogenesis stage for all conditions based on the reduction of 

pH from the initial pH value. The reduction of pH occurred due to the production of organic acid as the byproduct instead 

of biohydrogen. Clearly, methanogenic hydrogen consumers are absent in this fermentation system because no methane 

was detected in this study and biohydrogen reached the maximum production at a certain interval.  

The pH reduction started when the inoculum was mixed with the substrate and it is in contrast with the OD600 of the 

bacteria, which increased gradually until 36 hr fermentation time. Initial pH is a very important parameter as it will 

determine the survival of the inoculum introduced. As it is introduced at right or suitable pH, it will grow and acidogenesis 

will start. All samples showed that the pH dropped at only moderately acidic pH around 5.8 to 6 and the cumulative 

biohydrogen produced was higher, which is similar to a previous discussion that moderately acidic pH is good for 

inhabiting methanogenic activity and enhancing hydrogen-producing bacteria to produce biohydrogen [20, 25]. In this 

study, the pH dropped during 12 hr and 24 hr fermentation time, in which the production of CO2 is high or maximum. It 

suggests that the reduction of pH happened due to the production of soluble metabolites [16] and also due to the increase 

of CO2 content in biogas.  

Overall, it could be emphasized that in this experiment, the co-culture inoculum seems to have taken a short period of 

time (within 24 hr) to survive in the substrates, despite that inoculum usually takes some time to adapt to the environment 

before starting to produce biohydrogen [20, 26, 27]. The initial OD600 of every co-culture used was in the range of 0.2–

0.3. After 12 hr, the OD600 increased and doubled at 24 hr and started to decrease after 36 hr.  
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(a) 

                 

 
(b) 

 

   
(c) 

 

Figure 4. Relationship of biohydrogen production rate with optical density and pH changes for (a) free cell, (b) 

immobilized loofah sponge, and (c) activated carbon sponge 

 

 

4.0 CONCLUSION 

The biohydrogen production rate using co-culture by immobilization reached up to 39 mmol/hr/Lsubstrate. The combination 

of co-culture E. aerogenes and C. sporogenes worked well with the utilization pineapple substrate. Immobilization using 

AC sponge was determined as a better support material compared to LS, which could enhance approximately 67% of the 

production rate compared to FC co-culture.  
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