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Abstract 

Bio-based fuel produced from the renewable resources is efficiently overcome the shortcomings of fossil fuels. Several factors 

such as the increasing awareness on environmental problems, fossil fuel prices  and the sustainability of energy has 

encouraged the initiative in finding another source of transportation fuels. Higher alcohols have proved to be a better candidate 

to replace gasoline as vehicle fuel due to characteristics of higher energy content, low solubility in water, lower vapor pressure 

and higher blending ability with gasoline. Biologically, isobutanol and 3-methyl-1-butanol are produced through the 

fermentation of renewable feedstock with microorganism. Saccharomyces cerevisiae is known to be able to produce 

isobutanol and 3-methyl-1-butanol titers naturally without heterologous pathways. However, the production of these alcohols 

by Saccharomyces cerevisiae is only in a small quantity, thus several efforts in enhancing the isobutanol and 3-methyl-1-

butanol yields have been conducted. In this study, the amino acids (valine and leucine) and amino acid precursor (2-

ketoisovalerate) were added into the fermentation medium prior to the fermentation. The results obtained show that the 

supplementation of 2-ketoisovalerate and leucine individually into the fermentation broth leads to the increased in isobutanol 

and 3-methyl-1-butanol titers by 3.3 folds and 1.9 folds, respectively. The combination of 2-ketoisovalerate and valine 

increased the isobutanol yield by 4.3 folds while the 3-methyl-1-butanol was increased by 2.5 folds when supplemented with 

2-ketoisovalerate and leucine. These results portray that the isobutanol and 3-methyl-1-butanol titers can be improved by 

manipulating several factors which is important for future production of higher alcohols. 
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1.0 INTRODUCTION 

The growing concern on environmental problems and the decreasing of fossil fuel reserves ignites the production of liquid 

biofuel from renewable resources. Besides, the interest in replacing fossil fuel with biofuel is heightened due to the increased 

in global energy demand as well as the rising crude oil price [1,2,3]. Fossil fuel is a result of the decompositions of organic 

matters in the Earth. The use of fossil fuel as transportation fuel is known to be one of the major contributions in global 

warming as fossil fuel produce greenhouse gases such as methane (CH4) and nitrous oxide (N2O) as well as raises the 

atmospheric concentration of harmful carbon dioxide (CO2) [4]. The dependency on fossil fuel as energy sources for the 

continuous rising of transportation and industrial sector lead to the depletion of fossil fuel supplies. This situation results in 

the increase of the oil prices due to the fossil fuel supplies that cannot meet the energy demand in the future [5,6], directly 

affects the economic development worldwide. In addition, the production of biofuel is promoted by policies and regulations 

in several countries. The Europion Union for example has set criteria in using the biofuel as transportation fuel and also the 

usage of bioliquids as electric supplies in order to save the carbon and protects the biodiversity [7]. In Brazil, half of the 

energy supplied comes from renewable resources [8].   
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Biofuel is a renewable alternative to fossil fuel predominantly produced by renewable feedstock through fermentation of 

microorganisms [9]. Biofuel is considered the most sustainable alternative to replace fossil fuels as it has the potential in 

reducing greenhouse gases [10] as well as provides the positive impact towards economy. At present, higher alcohols 

production as transportation fuel attracts worldwide attention. Higher alcohols such as 1-propanol, 1-butanol, isobutanol, 2-

methyl-1-butanol (2-MB) and 3-methyl-1-butanol (3-MB) are known to have chemical properties that make them suitable to 

be used as liquid fuel compared to bioethanol [3,11]. Isobutanol is one of butanol isomers that contain four carbon structures 

while 3-MB has five carbon atoms. These branched-chain higher alcohols possess several characteristics which make them 

beneficial as transportation fuel. Isobutanol and 3-MB contain high octane value and high energy density that are comparable 

with gasoline [1]. In addition, higher alcohols also exhibits another advantages including suitable to be used in pure form or 

blended with gasoline to any concentration without engine modifications, less soluble in water and have lower vapour pressure 

compared to ethanol [12].  

Baker’s yeast, Saccharomyces cerevisiae is one of the most promising hosts for the production of biofuel [2]. Saccharomyces 

cerevisiae has the ability in producing a small amount of isobutanol and 3-MB naturally through the catabolism of amino acid 

in Ehrlich pathway during the fermentation process [13,14]. In alcohol fermentation, the usage of natural alcohol host gives 

an advantage which is the genetic modification method can be avoided. This genetic or metabolic modification method is a 

complicated process [15]. Saccharomyces cerevisiae is appropriate yeast to be used as fermentation host as it possess 

numerous advantages such as having high alcohol tolerance; enable to tolerate isobutanol titers up to concentration of 20 g/l 

[2]. Besides, Saccharomyces cerevisiae has high robustness as it is able to resist harsh conditions during fermentation and 

tolerant to low pH, resulting in low risk of contamination [16,17]. In addition, Saccharomyces cerevisiae is also known to 

have facultative characteristics thus the complex equipments and facilities are not required for the fermentation process.  

Higher alcohols are produced by the degradation of amino acids in yeast through Ehrlich pathway. Figure 1 presents the 

biosynthesis pathway for the production of isobutanol and 3-MB. The glycolysis process in cytosol converts glucose to 

pyruvate before being transported into the mitochondria by mitochondrial pyruvate carriers (MPCs) [18]. In 2-ketoisovalerate 

(2-KIV) synthesis, pyruvate is decarboxylated and condensed by acetolactate synthase (Ilv2p) in order to produce 2-

acetolactate. The acetohydroxyacid reductoisomerase (Ilv5p) is responsible in reducing the acetolactate to 2, 3-dihydroxy-

isovalerate which is then converted to 2-KIV by dihydroxyacid dehydratase (Ilv3p) [19]. Valine can be synthesized by 

branched-chain amino acid transaminase either in mitochondria (Bat1p) or in cytosol (Bat2p). The 2-KIV in cytosol is 

decarboxylated by α-ketoacid decarboxylase (KDCs) and being reduced by alcohol dehydrogenase (ADHs) to produce 

isobutanol titers [20]. 2-KIV is also directly involved in the biosynthesis of leucine. 2-KIV as a leucine intermediate is being 

converted to 2-isopropylmalate (2-IPM) by 2-isopropylmalate synthase (Leu4) and then catalyzed by another two enzymatic 

steps involving isopropylmalate isomerase (Leu1) and 3-isopropylmalate dehydrogenase (Leu2) to 2-ketoisocaproate (2-

KIC). 2-ketoisocaproate can be converted to 3-MB through decarboxylation to isoamylaldehyde by α-ketoacid decarboxylase 

(KDCs) and then reduced by alcohol dehydrogenase (ADHs) [14].  

Basically, for enhancing the isobutanol and 3-MB titers, several researches have focused on the overexpression of related 

genes, re-localization of the pathway in the same compartment and deleting the genes that inhibited the product formation. 

The overexpression of genes including ILV2, ILV5, ILV3, BAT2, KDCs and ADHs in valine biosynthetic pathway have been 

conducted to increase the isobutanol levels [17,21,15]. The overexpression of genes in Saccharomyces cerevisiae produced 

376.9 mg/l isobutanol and 765.7 mg/l 3-MB, 34 folds higher than the control strain (without genetic modification) [14]. The 

re-localization of valine biosynthesis in cytoplasm or the overexpression of KDCs and ADHs in the mitochondria enables to 

improve the isobutanol yield [13,21,22]. The expression of enzymes in Saccharomyces cerevisiae’s mitochondria produces 

the highest isobutanol concentration of 279 mg/l (minimal media) and 635 mg/l (complete media) [22]. The deletion of BAT1 

in Saccharomyces cerevisiae CEN.PK2-1C results in the increase of isobutanol titers by 14.2 folds. On the other hand, when 

the BAT2 is deleted the isobutanol yield remains approximately the same with the wild type [18]. 

Several techniques have been performed in order to enhance the isobutanol and 3-MB titers during fermentation. However, 

the process in enhancing the isobutanol and 3-MB involves complicated steps which are the modification of microbial genes 

through genetic and metabolic engineering. Based on the Ehrlich pathway, the production of isobutanol and 3-MB in 

Saccharomyces cerevisiae is directly related to amino acids. In order to increase the isobutanol and 3-MB production yield 

without genetic modification, several types of amino acids and amino acid precursor including valine, leucine and 2-KIV 

were added into the fermentation broth. 
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2.0 METHODOLOGY 

This section presents the procedures used in this study. The experiment consists of several parts as shown below. 

 

 

 

Figure 1 Schematic illustration of isobutanol and 3-methyl-1-butanol biosynthesis pathway produced by Saccharomyces 

cerevisae [14]. 

 

2.1 Strain and Inoculum Preparation 

Saccharomyces cerevisiae was obtained from baker’s yeast, Mauri-pan (AB Mauri Malaysia Sdn. Bhd., Malaysia). In order 

to prepare the inoculum, a loop of yeast cell that was grown on YPD agar for three days at 30 ± 0.5 0C was aerobically 

inoculated into 10 ml YPD medium broth and incubated for 20 – 24 hours at 30 ± 0.5 0C with orbital shaking at 170 rpm. The 

initial glucose concentration of the medium was 20 g/l. 

 

2.2 Microbial Fermentation 

The preculture (10 % v/v) was inoculated into 250 ml Erlenmeyer flask containing 50 ml medium (glucose (140 g/l), peptone 

(8 g/l), yeast extract (8 g/l), (NH4)2SO4 ( 3 g/l), KH2PO4 (1 g/l), MgSO4.7H2O (0.5 g/l) and FeSO4.7H2O (0.05 g/l)). The 

carbon source was sterilized separately at 121 0C and added to the sterilized fermentation medium. The fermentation was 

cultivated at 28 0C in an incubator shaker with 179 rpm rotational speed for 48 hours. During the course of fermentation, 

samples were taken at 24 hours interval for analyses of isobutanol and 3-methyl-1-butanol. These experiments were conducted 

in triplicates. 
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2.3 Supplementation of Amino and Keto Acid 

Before starting the fermentation, an amount of 0.5 to 1.5 g/l valine, leucine and 2-KIV were added individually into the shake 

flask containing the sterilized medium broth. The experiments were then followed with the addition of combination of 1.5 g/l 

of amino acids and amino acid precursor into the fermentation medium. 

 

2.4 Gas Chromatographic Analysis 

Fermentation products such as isobutanol and 3-MB were quantified by gas chromatography (Clarus 580 Perkin Elmer; USA) 

equipped with a flame ionization detector. The separation of alcohol compounds were carried out using a DB-WAX capillary 

column (30 m, 0.53 mm inside diameter, 0.5 µm film thickness). GC oven was initially held at 40 0C for 2 minutes and raised 

with a gradient of 15 0C / min until reaching 150 0C and held for 3 minutes. The injector and detector were maintained at 235 
0C and 230 0C, respectively. Supernatant of culture broth were injected in split injection mode with a 20: 1 split ratio. Nitrogen 

was used as carrier gas and the combustion gas was a mixture of hydrogen and air. 

 

3.0 RESULTS AND DISCUSSION 

The results obtained were discussed in this chapter. The discussions were divided into two parts; the supplementation of 

valine, leucine and 2-KIV individually into the fermentation broth followed by the addition of the combined one.  

 

3.1 Enhancing Isobutanol and 3-Methyl-1-butanol Production by Supplementation of Amino Acids and Amino Acid 

Precursor Individually 

Two amino acids (valine and leucine) and one amino acid precursor (2-KIV) were supplemented into the fermentation medium 

broth in order to enhance the isobutanol and 3-MB titers in Saccharomyces cerevisiae. Figure 2 (a) presents isobutanol yields 

obtained after the addition of different concentration of valine, leucine and 2-KIV, individually. The addition of 0.05 g/l to 

1.5 g/l 2-KIV resulted in the proportional increase in isobutanol titers. The highest isobutanol yield was 856 mg/l (using 1.5 

g/l 2-KIV); 3.3 folds higher compared to the control yield (200 mg/l). The isobutanol biosynthesis pathway in Figure 3 shows 

that 2-KIV is the key in isobutanol production. The production of isobutanol in cytosol involves two steps mediated by several 

α-ketoacid decarboxylases (KDCs) and alcohol dehydrogenases (ADHs) [13]. It is likely that the increase in isobutanol 

production is a consequence of increase in catabolism of externally supplied 2-KIV into the cytosol. 

The supplementation of valine in fermentation broth also increased the isobutanol produced by Saccharomyces cerevisiae. 

However, the concentration obtained was lower compared to the addition of 2-KIV. According to Figure 3, valine is 

synthesized in mitochondria from 2-KIV by Bat1 while the degradation of valine to 2-KIV occur in cytosol by Bat2. Based 

on the result, it can be predicted that the degradation of valine to 2-KIV in cytosol does not occur thus the isobutanol yield 

only enhanced in a small amount (further study has not been done). 

Leucine gave the negative effect on isobutanol titers (Figure 2a). The isobutanol concentration decreased with the increased 

in leucine concentration in medium broth. Leucine, is one of the amino acid that leads to the 3-MB production during Ehrlich 

pathway in yeast strain thus the addition of this acid does not improve the isobutanol yield.  

Figure 2 (b) depicts the 3-MB concentrations with the addition of amino acids and amino acid precursor. The addition of 

leucine into the fermentation medium caused the significant increase in the 3-MB levels. The highest yield (979 mg/l) was 

obtained with the addition of 1.5 g/l leucine. The titers increased by 1.9 folds compared to the yield without leucine 

supplementation. This result was expected, considering the mechanisms involved in the Ehrlich pathway [23]. Figure 1 shows 

that leucine is converted to 2-KIC in cytosol, the increase in leucine supplemented in the medium broth resulted in the 

significant increase in 3-MB concentration. 

The addition of valine decreased the 3-MB in Saccharomyces cerevisiae. This is because valine leads to the production of 

isobutanol in Ehrlich pathway. On the other hand, the supplementation of 2-KIV during the fermentation process gave the 

small increment in 3-MB concentration. 2-KIV is an intermediate to leucine biosynthesis; requires three enzymatic steps to 

produce 2-KIC before being converted to 3-MB [14]. 
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Figure 2 Effect of 2-ketoisovalerate, valine and leucine supplementation with different concentration on the higher alcohols 

production in Saccharomyces cerevisiae after 48 hours of fermentation. Figure 2 (a) shows the isobutanol production and 

Figure 2 (b) shows the 3-MB production. Error s represent the standard deviation of three independent fermentations. 

(Dotted bars) 0.05 g/l; (black bars) 0.5 g/l; (striped bars) 1.0 g/l; (grey bars) 1.5 g/l. 

 

 

Figure 3 The biosynthesis of isobutanol naturally from glucose in Saccharomyces cerevisiae. Two possible pathways 

involved are ValC-dependent: valine transportation from mithocondria and KIVC-dependent: KIV transport from 

mitochondria [18]. 
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3.2 Supplementation of Combination of Amino Acids and Amino Acid Precursor Mixture for the Isobutanol and 3-

Methyl-1-Butanol Improvement  

According to Procopio et al. (2015) [23], the higher alcohols increased with the addition of respective amino acids. This 

situation is achieved due to the increase in capacity to decarboxylate the transaminated α-keto acids and directly reduced to 

their respective higher alcohols [24,25]. Based on the result in Figure 2, the experiments were proceeded with the 

supplementation of 1.5 g/l amino acids and amino acid precursor’s combination into the fermentation broth. Figure 4 presents 

the isobutanol and 3-MB concentration during the fermentation with combined 1.5 g/l amino acids and amino acid precursor. 

The combination of 2-KIV and valine gave the highest isobutanol concentration with 1058 mg/l, 4.3 folds higher than the 

control yield. 2-KIV and valine are directly involved in the formation of isobutanol in Ehrlich pathway (Figure 2), the 

supplementation of these nitrogen sources enables to improve the product titers. The highest 3-MB of 1178 mg/l results from 

the addition of 2-KIV and leucine. According to Figure 1, these amino acid and amino acid precursor lead to the 3-MB 

production. The increase in 2-KIV and leucine in cytosol enhances the production of 3-MB.   

 

  
Figure 4 The production of (light grey bars) isobutanol and (black bars) 3-MB yield with the addition of 1.5 g/l amino acids 

and keto acid mixture. The titers were measured after 48 hours of fermentation. Error bars represent the standard deviation 

of three independent fermentations. 

 

 

 

4.0 CONCLUSION 

From the results of this study, it can be seen that the supplementation of amino acids and amino acid precursor is able to 

increase the higher alcohols production. Valine, 2-KIV and leucine are directly related to the isobutanol and 3-MB production 

in Saccharomyces cerevisiae through Ehrlich pathway. Therefore, the fermentation with addition of these nitrogen sources 

improved the isobutanol and 3-MB titers. The analysis in this paper shows that the higher alcohols titers can be improved by 

manipulating several factors without conducting the genetic modification on the microorganisms thus is important for the 

process improvement and future mass production of higher alcohols. 
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