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Abstract 

Hydrogen is an interesting energy source alternative to fossil fuel which commonly produced from a non-renewable resource 

such as methane. Alternatively, ethanol is an attractive resource option for producing hydrogen because of its renewability. 

Assessing both alternatives is important for selection of better and sustainable option. In this work, we perform an environmental 

and economic assessment of both hydrogen production pathways and compare its performance. In doing that, both processes 

were modelled and simulated in Aspen Plus V8.6. Sensitivity analysis were performed as well. Life cycle assessment (LCA) 

ReciPe method was performed to evaluate the environmental performance using GaBi sotware. Overall, 16 categories impact 

assessment were evaluated. Economic assessment was based on capital expenditure (CAPEX) of all main equipment and 

operating expenditure (OPEX) of utilities. From LCA results, three categories were identified as highly significant namely 

climate change, fossil depletion and water depletion. Methane shows a higher impact on climate change. In contrary, ethanol 

shows a higher impact on fossil fuel resource depletion and water resources. Economic assessment shows that in term of capital 

expenditure (CAPEX) methane is 5.2% less compared to ethanol. Whereas, for operating expenditure (OPEX) methane is 12.8% 

less compared to ethanol. Overall, our findings show that methane outwit ethanol despite the latter uses a renewable source for 

hydrogen production.  
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1.0 INTRODUCTION 

The world energy demand currently depends on fossil fuel as a source. While the population of human increase more than 2% 

thus increasing energy demand, fossil fuel sources depleted yearly. It is estimated that 25% of the world population consumes 

75% of the world energy supply [1]. Today, global demand towards energy consumes more than 85 million barrels of oil and 

104 trillion cubic feet of natural gas per day and this consequently release a lot of greenhouse gas to the atmosphere [2]. In the 

light of this, a new source of energy is needed as an alternative to fossil fuel. The new energy resource however need to be 

sustainable with minimal impact to the environment. It is found that one of the promising new source of energy is hydrogen. 

Hydrogen energy is one of the most sustainable energy carrier to reduce the dependence on fossil fuels. Hydrogen is abundant 

with high reactivity chemically and can be found in water, fossil fuels and other living thing such as animals and plants. In 

addition, the energy content for hydrogen; 120 MJ/kg, is three times higher compared to gasoline with 44 MJ/kg which shows 

hydrogen is highly efficient in solving energy crisis [3]. Apart from that, burning hydrogen does not produce carbon emission 

thus could significantly reduce carbon monoxide and other greenhouse gases.  

Currently, hydrogen is mainly produced from methane. In the United States, hydrogen is produced at more than 8 million tons 

and mostly from fossil fuel such as methane [4]. Furthermore, 97% of hydrogen production was synthesized from methane steam 

reforming (MSR) of natural gas. However, methane feedstock availability is reduced year by year. Alternatively, renewable 
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resources can replace methane which could considerably reduce dependency on fossil fuels as fuel sources. One such option is 

ethanol. Ethanol is a good alternative since the feedstock for producing ethanol is abundant and renewable. Moreover, ethanol 

has a high hydrogen content, non-toxicity, storage and handling safe and can be produced from renewable sources such as 

biomass sources, agro plantation waste and municipal solid waste [5].  

There are numerous methods to conducted environmental assessment of chemical processes. One of the most widely used is life 

cycle assessment (LCA). Life cycle assessment (LCA) is a method for assessing various environmental aspects associated with 

the development of a product and its potential impact throughout a products life from raw material, processing, manufacturing, 

use and disposal or end of life. LCA allows for characterization of the consequences of possible public policy options or scientific 

alterations and development of novel sustainable energy resources and technologies [6]. Apart from that, LCA can be used to 

evaluate the process and product impacts towards the environment as well as helping manufactures and customer to select an 

environmentally friendlier option. There are several studies conducted on the environmental impact of hydrogen production 

using life cycle assessment (LCA). Giraldi et al. [7] for example used LCA to analyse the environment burden of hydrogen 

production focuses on emissions of greenhouse gases. In another work, Verma et al. [8] conducted LCA for hydrogen production 

from underground coal gasification with and without carbon capture. Their study focused on the global warming impact and 

greenhouse gas emission. Authayanun et al. [9] conducted LCA for bio-ethanol reforming and proton exchange membrane fuel 

cell (PEMFC) integrated process fuelled by cassava based bio-ethanol and methane as co-reactant. Their LCA analysis shows 

that overall mixed bio-ethanol and methane reforming integrated with PEMFC system (BM-PEMFC) has more environmental 

impact than dehydrated bio-ethanol reforming with PEMFC system (DE-PEMFC). However, the global warming potential 

(GWP) and photochemical oxidant formation (POFP) impacts of the BM-PEMFC system remain high. In another study, Galera 

et al. [10] used LCA to assess the environmental impact of supercritical water reforming of glycerol for hydrogen production. 

Aspen Plus was used as simulator to solve the mass and energy balance. Their finding shows that the process gives a low carbon 

emission in the greenhouse gas inventory. Christoforou & Fokaides [11] investigate the environmental impact of torrefaction 

process using LCA. Their results conclude the important of the drying phase of the whole torrefaction system and the potential 

improvement of olive husk process in terms of energy consumption.  

Apart from environment assessment, there are also studies on economic feasibility of hydrogen production. Muellerlanger et al. 

[12] conducted an economical evaluation on selected hydrogen production processes based on natural gas steam reforming, coal, 

biomass gasification and water electrolysis. They found out that from an economic viewpoint steam reforming of natural gas is 

currently the most favourable hydrogen production method compared with other methods. Gasification of coal could be 

competitive even at present condition but is only sensible if coupled with carbon capture. Hydrogen production from electrolysis 

is unlikely to be an economically competitive option mainly due to high electricity. Braga et al. [13] performed a technical, 

economic and ecological analysis of hydrogen production from biogas steam reforming. In their work, they used biogas in MSR 

as alternative for hydrogen production and claimed that it able to decreased the negative environmental impact compare to 

natural gas. In another work, Roldan [14] investigated the technical and economic feasibility of adapting an industrial steam 

reforming unit for production of hydrogen from ethanol. The economic analysis performed indicates that the high market price 

of pure ethanol makes the process far from viable. 

Most of the literature conducted a standalone environmental and economic assessment of different pathways of hydrogen 

production. While most such assessment focuses on methane, ethanol based hydrogen production receive less attention. 

Therefore, in this work our main objective is to assess and compare the environmental and economic performance of both 

processes. The environment assessment was performed using LCA which give details insight the impact to the environment. 

The economic analysis involves capital cost calculation of each unit operations whereas operating cost calculation involve 

utilities particularly steam and water consumption. Such work contributes to the depth analysis and insights of both environment 

and economic assessment and comparison. Overall, this study will help decision makers or stake holders to understand the 

environmental and economic impacts of hydrogen production which could mitigate undesired impacts and ensure the 

sustainability to attract community, government and investor interest and support. 

To perform the analysis, both case studies are model in Aspen Plus. From our literature review, there are few works on modelling 

and simulation of hydrogen production from methane and ethanol. Boyano et al. [15] for example, model a hydrogen production 

process by adding a combustion chamber (COMBRET) before the MSR reactor to provide heat required by the MSR reaction. 

The reactions were simulated using a non-kinetic based approach. In another work by Antzara et al. [16], hydrogen production 

process was modelled to analyse the thermodynamic effect of hydrogen production in situ with carbon dioxide capture. In this 

work, the MSR and WGS reactions were modelled using non-kinetic model namely RGibbs and RStoic block model. Sensitivity 

analysis were also performed for several parameters such as temperature, pressure, feed ratio, carbon capture efficiency and 

NiO/CaO ratio. In another work, Gutiérrez-Guerra et al. [17] simulated a catalytic ethanol steam reforming in Aspen HYSYS 

using Peng-Robinson thermodynamic method. The ESR reactor were model as fractional conversion reactor while WGS and 

COMPROX reactors were simulated as equilibrium reactors. To obtain the desired hydrogen purity, a membrane unit is used. 

In another work, Rossetti et al. [18] simulated an ethanol based hydrogen production process for modified combined heat and 

power (CHP) generation unit. In this work, Peng-Robinson thermodynamic method was used particularly suited to describe light 

gas mixture in wide temperature and pressure range. Methanation reaction in the reactor (COMET) is considered when methane 

is present in the process due to the side reactions in the ESR reactor. Both WGS and methanation used Gibbs reactor model. 

Most of the simulation work on hydrogen production were mainly based on non-kinetic model. For comparable effort, there is 

a need to simulate this process based on more rigorous kinetic model. Although simplified models were easier to converge, a 

kinetic based model approach is needed to provide more insights and accurate behaviour of the process. Such rigorous modelling 
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approach are more accurate and precise. Therefore, in this work both hydrogen production route; methane (Case 1) and ethanol 

(Case 2), will be simulated using rigorous model in Aspen Plus. The simulation results will then be used for environmental and 

economic analysis using GaBi Software and Excel spreadsheet respectively. 

 

2.0 METHODOLOGY 

 

Figure 1 shows the overall research methodology framework. The framework is divided into four main elements namely (1) 

Process Modelling (2) LCA Analysis (3) Economic Assessment and (4) Comparison. To aid each element particularly element 

1, 2 and 3 computer aided tools were utilized. In element 1 Aspen Plus was used to model and simulate Case 1 and Case 2. GaBi 

software was used to perform LCA analysis in element 2 whereas in element 3 Excel spreadsheet was utilized to perform 

economic assessment. Details of each element is discussed next. 
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Figure 1. Research methodology framework 

 

2.1 Process Modelling 

In the process modelling element, Aspen Plus were used for modelling the main unit operations of the hydrogen production 

process including reactors, separation columns as well as overall flowsheet of Case 1 and Case 2. In addition, reactor and 

separation models were validated with experimental data and flowsheet sensitivity analysis were performed to determine the 

best operating condition. The simulations results which contained information such as stream mass and energy properties, 

equipment size and utility consumption were then used for environmental and economic assessment.  
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2.1.1  Reactor Modelling 

The rate expression used for MSR, ESR and WGS reactions were based on LHHW reaction mechanism. MSR involves reaction 

between methane and steam to produce hydrogen and carbon monoxide as in equation 1 in a catalytic fixed-bed reactor. The 

rate expression, R for MSR is describe in equation 2. 

 

𝐶𝐻4 + 𝐻2𝑂 → 3𝐻2 + 𝐶𝑂 (1) 

  

𝑅𝑀𝑆𝑅 =

𝑘1 (
𝑃𝐶𝐻4𝑃𝐻2𝑂
𝑃𝐻2
2.5 −

𝑃𝐶𝑂𝑃𝐻2
0.5

𝐾𝑒
)

𝐷𝐸𝑁2
 

(2) 

 

The term DEN is given by, 

 

𝐷𝐸𝑁 = 1 + 𝐾𝐶𝑂𝑃𝐶𝑂 + 𝐾𝐻2𝑃𝐻2 + 𝐾𝐶𝐻4𝑃𝐶𝐻4 +
𝐾𝐻2𝑂𝑃𝐻2𝑂

𝑃𝐻2
 

(3) 

  

Where P  is partial pressure, k1 is rate constant and Ke is adsorption equilibrium constant. The MSR kinetic parameters 

is shown in Table 1.  

 

Table 1 Kinetic parameter for MSR [20] 

Parameter Pre-Exponential factor Value 

k1  4.2248 ×1015 (mol atm0.5 /g h) 240.1 

KCH4 6.65 ×10-4 (atm-1) -38280 

KH2O 1.77×105 (atm-1) 88680 
KH2 6.12×10-9 (atm-1) -82900 

KCO 8.23×10-5(atm-1) -70650 

Ke 7.846×1012(atm2) 220200 

 

The reaction for ethanol steam reforming (ESR) on the other hand involve ethanol and steam to produce hydrogen and carbon 

monoxide as shown in equation 4. ESR reaction can also undergo several other reactions such as dehydrogenation, dehydration 

and cracking to produce side products such as carbon dioxide, methane, carbon monoxide and coke [11]. There are several 

researches that modelled a simplified ESR reaction [19,20,21]. Han et al. [21] for example developed a simplified power law 

kinetic model based on their investigation of Ni/Al2O3 catalyst for hydrogen production from ethanol. The proposed model and 

its kinetic parameters is shown in equation 5 and adopted in this work.  

 
𝐶2𝐻5𝑂𝐻 + 𝐻2𝑂 → 4𝐻2 + 2𝐶𝑂 (4) 

 

𝑅𝐸𝑆𝑅 = 𝑘2𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
) (𝑃𝐸𝑡𝑂𝐻)

𝑎(𝑃𝐻2𝑂)
𝑏
 

(5) 

 

Where R is universal gas contants and T is temperature. The activation energy for this rate expression is 23 kJ/mol, the reaction 

order; a and b, for the partial pressure, P of ethanol and water are 0.711 and 2.71 respectively. k2 is 4.39 × 102 mol (min g-

cat)(atm) [20]. To reduce undesired CO and increase H2 yield in both MSR and ESR reactions, these reactions products undergo 

a two stage water gas shift (WGS) reactor operating at temperature between 200-400 ̊C and 127-177 ̊C usually in presence of 

copper/zinc oxide/alumina catalyst [15,22,23].  

The reaction for WGS is shown in the equation 6 in which CO react with excess steam to produce CO2 and H2. The WGS rate 

of reaction expression was proposed by Amadeo and Laborde [24] and Mendes et al. [25] by using LHHW kinetic expression 

as shown in equation 7. The constant parameter in the rate equations 7 were based on Mendes et al. [25] as shown in Table 2.  

 

𝐶𝑂 + 𝐻2𝑂 → 𝐻2 + 𝐶𝑂 (6) 

 

𝑅𝑊𝐺𝑆 =

𝑘3𝑃𝐶𝑂𝑃𝐻2𝑂 (1 −
𝑃𝐶𝑂𝑃𝐻2

𝑃𝐶𝑂𝑃𝐻2𝑂𝐾𝑒
)

(1 + 𝐾𝐶𝑂𝑃𝐶𝑂 + 𝐾𝐻2𝑂𝑃𝐻20 + 𝐾𝐶𝑂2𝑃𝐶𝑂2 + 𝐾𝐻2𝑃𝐻2)
2 

(7) 
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Table 2 The kinetic parameter for WGS 

Parameter Pre-Exponential factor Value 

K3  0.92 (mmol g-1 s-1 atm-2) 4080 

KCO 2.21 -910 
KH2O 0.4 -1420 

KCO2 0.0047 -24720 

KH2 0.052 -14400 

 

The MSR, ESR and WGS were modelled using RCSTR model block. Separate reaction ID were defined for each reaction. 

Reaction class of LHHW were selected for each reaction. However, the rate expressions describe previously for MSR and WGS 

cannot be used directly in Aspen Plus. Therefore these equations were rearranged using natural logarithm (Ln) [26]. For MSR 

the newly rearranged equation is shown in equation 8. The term DEN is given by equation 2 whereas equation 9 is the rearranged 

rate expression for WGS reaction. All models for MSR, ESR as well as WGS were validated with experimental data from Singh 

et al. [27], Mathure et al. [20] and Amadeo & Laborde [24] respectively using the same reactor operating and design conditions. 

 

𝑅𝑀𝑆𝑅 =

𝑘1𝐾1 (𝐾1
𝑃𝐶𝐻4𝑃𝐶𝑂
𝑃𝐻2
2.5 − 𝑃𝐻2

0.5𝑃𝐶𝑂)

𝐷𝐸𝑁2
 

(8) 

 

 

 

𝑅𝑊𝐺𝑆 =
𝑘2 (𝑃𝐶𝑂𝑃𝐻2𝑂 −

𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒

)

(1 + 𝐾𝐶𝑂𝑃𝐶𝑂 + 𝐾𝐻2𝑂𝑃𝐻20 + 𝐾𝐶𝑂2𝑃𝐶𝑂2 + 𝐾𝐻2𝑃𝐻2)
2 

(9) 

   

2.1.2  Separation Modelling 

The purpose of separation process in hydrogen production is to increase the purity of hydrogen. In this work, absorption tower 

and stripper were used to separate carbon dioxide from the reactors to obtain high purity of hydrogen of more than 90 mol%. 

Aqueous monoethanolamine (MEA) were used as the solvent. Rigorous distillation model, RADFRAC, were used to model the 

absorption and stripping column. The rigorous model to the liquid and vapour flow in the absorption column were based on the 

calculation of heat transfer, mass transfer between the phases and chemical kinetics. In total there are 9 chemistry models 

considered in this work as shown in equation 10 - 18 [28].  

 
  OHMEAOHMEAH 32  

(10) 

  32 HCOMEAOHMEACOO
 

(11) 

 OHOHOH 3

322
 

(12) 

  OHHCOOHCO 3322 2
 

(13) 

  OHCOOHHCO 3

2

323  
(14) 

  32 HCOOHCO
 

(15) 

  OHCOHCO 23  
(16) 

  OHMEACOOOHCOMEA 322  
(17) 

OHCOMEAOHMEACOO 223  

 
(18) 

 

In this model, it is assumed NOx and SOx are neglected in the gas stream. In the separation model, the apparent (base) approach 

component was selected for electrolyte system. The electrolytes system has impacts on physical property calculations and phase 

equilibrium calculations. The electrolytes system is defined as one in which some of the molecular species dissociate partially 

or completely into ions in a liquid solvent and some of the molecular species precipitate as salts. These dissociation and 

precipitation occurs fast enough that the reactions can be assume to be at chemical equilibrium. Reaction 10 – 15 was calculated 

from the standard Gibbs free energy change whereas reaction 15 – 18 used the general power law expression for the rate-

controlled reaction. The kinetic parameters for the reactions were obtained from Li et al. [28]. The flowsheet for CO2 capture by 

MEA were developed in Aspen Plus which include absorption column, stripping column and a heat exchanger between the two 

columns as shown in Figure 2. With regards to the convergence issue, it is assumed that the model has no recycle stream, no 

mark-up stream for amine and water washing section present in the systems. The model was validated with the work by Li et al. 

[28] using the same design and operating parameters. 
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Figure 2. The simulation flowsheet for CO2 removal 

2.1.3  Overall Flowsheet 

The design capacity of the hydrogen production process is 627 kmol/hr with hydrogen purity of 93 mol%. Figure 3 shows the 

overall flowsheet diagram of the hydrogen production process. Both Case 1 and Case 2 have the same configuration. The only 

difference is the fed and stream reforming reaction. Ethanol is used instead of methane whereas the reactor involves ESR reaction 

instead of MSR reaction. This process starts with the feedstock in which methane or ethanol is mixed with superheated steam 

before entering heat exchanger (E-101) and heated using hot flue gas. The mixed gas then enters the reformer reactor (R-101) 

reactor. In the reactor, methane/ethanol reacts with steam to produce hydrogen and carbon monoxide using Ni-based catalyst. 

The reaction products namely hydrogen, carbon monoxide and excess steam are then cooled in heat exchanger (E-102) using 

cooling water. It is then mixed with steam before going through two WGS reactor; high temperature HWGS (R-102) and low 

temperature LWGS (R-103), to increase hydrogen yield and reduce carbon monoxide in the stream. After the LWGS reactor, 

the stream is cooled down in heat exchanger (E-104) using cooling water. After that, the stream is fed into a packed bed 

absorption tower (T-101) to remove carbon dioxide using MEA solution. The carbon dioxide absorbed by MEA flows at the 

bottom stream of the absorber which then heated by heat exchanger (E-105) using high pressure steam before entering the 

stripping column. The heat provided by the stripper reboiler loosen the MEA-carbon dioxide interaction and thus breaks the 

bonds and therefore releasing the carbon dioxide via top of the stripping tower whereas the MEA solution flows out at the bottom 

stream. On the other hand, the top product stream of the absorption tower is cooled down in heat exchanger (E-106) before 

entering a flash column (V-101). In the flash column, hydrogen and water are separated in which 93 mol% hydrogen is obtained 

at the top of the column. Table 3 summarize the main unit operation design parameters for both cases. 
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Figure 3. Simplified process flow of hydrogen production (a) Case 1 (b) Case 2 

 

Table 3 Main unit operation design parameters. 

Main unit operation Case 1 Case 2 

Reformer reactor (R-101) 

Reaction type 

Temperature/Pressure 

Catalyst 

 

MSR 

700 C / 1 bar 

Ni 

 

ESR 

800 C / 1 bar 

Ni 

HWGS reactor (R-102) 

Temperature 

Catalyst 

 

400 C/1 bar 

CuO/ZnO/Al2O3 

 

400 C/1 bar 

CuO/ZnO/Al2O3 

LWGS reactor (R-103) 
Temperature 

Catalyst 

 
210 C/1 bar 

CuO/ZnO/Al2O3 

 
210 C/1 bar 

CuO/ZnO/Al2O3 

Absorption column (T-101) 
Temperature/Pressure 

No. of stages 

Packing type 
HETP 

 
40 C / 1 bar 

20 

Flexipac 
0.5 m 

 
40 C / 1 bar 

20 

Flexipac 
0.5 m 

Stripper (T-102) 

Temperature/Pressure 
No. of stages 

Packing type 

HETP 

 

100 C / 1 bar 
20 

Flexipac 

0.5 m 

 

112 C / 1 bar 
20 

Flexipac 

0.5 m 

Flash column (V-101) 
Temperature/Pressure 

 
25 C/ 1 bar 

 
25 C/ 1 bar 

 

2.2  Environmental Assessment 

LCA assessment consists of four phases. Primary phase in LCA is to clarify the goal and scope definition. Defining the goal 

required to clearly report the reason and intention for carrying out the study while for scope definition it is required to clearly 

detail the product system to be studied, functional unit, system boundary, assumption, limitation and impact categories. In this 

work, the LCA objective is to evaluate the environmental impact of hydrogen production for Case 1 and Case 2. The functional 

unit (FU) which provide a basis for calculating the inputs and outputs were based on 1 kg of hydrogen production. The system 

boundaries were based on the cradle to grave approach which starts from methane/ethanol feedstock to hydrogen storage. Figure 

4 shows the system boundaries which consist of five subsystems namely feedstock (SB1), hydrogen production (SB2), process 

steam (SB3), solvent absorption (SB4) and process water plant (SB5). Note that, the construction and commissioning phases as 

well as energy consumptions were excluded from the analysis.  
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SB1 is the feedstock source. For methane it is obtained from natural gas processing plant and assumed transported using 

pipelines. Ethanol feedstock on the other hand, was assumed obtained from an ethanol processing plant. SB2 consist of reactions 

and purification section. The reaction section includes MSR/ESR and WGS reactors. The separation section consists of carbon 

dioxide removal and a separator which aims to purify the hydrogen especially from CO2. The system boundary also considers 

process steam generation section (SB3). This section considers the combustion of hydrocarbon fuel in the boiler to generate 

steam which is used in the process and also for heating utilities. SB4 is the MEA supply subsystem which supply absorbents for 

CO2 removal in the separation process. Finally, the water supply for the reforming process and cooling water were included in 

SB5. LCI involves the collection and compilation of the simulated data results from Aspen Plus.  

The second phase for LCA study is life cycle inventory analysis (LCI) which involve clarification on data sources and principles 

to use for quantitative computation. The purpose of developing the LCI is to calculate the quantities of input and outputs involved 

in delivering a specific functional unit of the product system under study [29]. The sources of primary data for the inputs are 

energy, raw material, ancillary materials and other physical inputs. Meanwhile, the sources of data for output mostly come from 

product, co-product, emission, waste and other environmental aspects. The input like water, emissions CO2, preparation of 

chemical and electricity used in the different production stage are included in analysis. The upstream impacts of inputs 

production were based on database from GaBi while the inputs and outputs were obtained from Aspen Plus.  

The third phase of the LCA study is life cycle impact assessment (LCIA). This phase provides indicators and basis for analysing 

the potential contribution of the resource extractions and waste/emission in an inventory to a number of potential impacts. A 

commercial LCA software, Gabi is used as currently practised by many LCA researchers. The life cycle interpretation occurs at 

every stage in the LCA study. When the results from LCI and LCIA are interpreted, significant issues shall be identified, 

uncertanties inherited in the study shall be addressed via uncertainty analysis and sensitivity analysis. The purpose for 

interpretation step is to reach conclusions and recommendations for the report of the LCA study or LCI study. This stage is 

important to improve the reporting and transparency of the study. This is important for the LCA final report. 

 

 

Figure 4. System boundaries for LCA 

 

 

2.3  Economic Assessment 

The economic assessment considers capital expenditure (CAPEX) of all main equipments as well as operating expenditure 

(OPEX) of the process. For CAPEX, bare module cost (CBM) which based on the equipment size, operating condition and 

material of construction (MOC) was considered. Equipment sizing was performed in Aspen Plus. The MOC of equipment was 

assumed stainless steel. Normally, purchased cost varies yearly due to inflation indicated by the chemical engineering plant cost 

index (CEPCI). In this work the CEPCI used was 558.3 for June 2017. The OPEX value on the other hand, considers the utilities 

consumed namely steam and cooling water. Cost for steam and cooling water was considered as $17.7/GJ and $0.354/GJ 
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respectively [29]. The utilities consumption data was obtained from the simulated model in Aspen Plus. CAPCOST, an Excel 

based tools, were used to calculate the CAPEX and OPEX of both cases. Then, in the fourth element comparison were performed 

on both cases and the results is analysed and discussed. 

 

3.0 RESULTS AND DISCUSSION 

3.1  Model Validation And Sensitivity Analysis 

Figure 5 (left) shows the experimental result by Singh et al. [27] which shows that methane conversion increase rapidly at the 

first meter of the reactor length. After that, the conversion started to resolve. The same trend is also found in the simulated MSR 

reactor in Aspen Plus as shown in Figure 6 (right). The highest error was at 1 meter with 11.71 % while the smallest error is at 

2 m with 0.53 %. Overall the mean error was 3.27 %. 

 

 

 

 

 

 

 

Figure 5. The methane conversion effect on length of the reactor (left) Singh et al [29] (right) simulation using Aspen Plus 

Sensitivity analysis of the reactor performance was done by changing several operation variables namely catalyst weight, reactor 

temperature, pressure and steam to methane feed ratio into the reactor to observe and determine the suitable operating condition 

for MSR. For the sensitivity analysis, the manipulated variables were independently varied while the other design parameters 

remain unchanged. Figure 6a shows the sensitivity analysis results for variation in the catalyst weight to hydrogen production 

molar flowrate. It shows that increasing the amount of catalyst in the reformer, increases the hydrogen production especially at 

the first 100 kg. After about 300 kg, the hydrogen production starts to become constant. Figure 6b shows the response of the 

hydrogen molar flowrate to MSR reactor temperature. Hydrogen started to produce at temperature of 500 °C and increased 

drastically until the temperature of 700 °C. After that, hydrogen flow rate started to become constant. Increasing the reactor 

temperature to 700 °C leads to high reforming reaction rate and thus improved methane conversion and increased the hydrogen 

yield. Figure 6c shows the changing of reactor pressure in the reformer to hydrogen molar flowrate. It is found that when pressure 

is increased, the hydrogen molar flow rate shows inverse response where the highest hydrogen produced is at 1 bar. This inverse 

effect causes methane conversion and yield of the hydrogen to decreases. According to Antzara et al. [16], this due to the Le 

Chatelier’s effect in which increase in pressure causes inverse effect on methane conversion. Figure 6d shows the effect the 

methane conversion towards change in steam to methane feed ratio. From the figure when steam feed flow rate is increased, the 

percentage of methane conversion also increased. This shows that the feed ratio is important to ensure the reaction is pushed to 

the right side thus increases hydrogen flow rate. Moreover, when steam to methane ratio is increased, the energy requirement 

for the reformer reaction reduces due to the reduced flow rate of methane. Therefore, for maximum hydrogen production the 

MSR reactor were simulated using 300 kg of catalyst with operating temperature and pressure at 700 °C and 1 bar respectively 

and 4 steam to methane feed ratio. 
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(a)      (b) 

 

(c)      (d) 

Figure 6. Sensitivity analysis of MSR reactor. (a) Effect of weight of catalyst on hydrogen molar flowrate (b) Effect of 

temperature on hydrogen molar flowrate (c) Effect of pressure on hydrogen molar flow rate (e) Effect of steam feed ratio on 

conversion of methane 

 

Figure 7 shows the results from Mathure et al. [20] in which the ethanol conversion increased with increased molar ratio of 

steam. The highest conversion is obtained at 18 molar ratio of steam to ethanol with conversion up to 69%. Figure 7 also shows 

the comparison results of the simulated model. The highest error was molar ratio at 6 with 14.9% and the smallest error was 

molar ratio at 18 with 7.3%. the mean error was 12%. The sensitivity analysis for ESR reactor is the same as MSR reactor. 

Figure 8a shows the effect of increasing the amount of catalyst in the reformer. The graph shows that the molar flow rate of 

hydrogen is increased continuously when the amount of catalyst is increased. The maximum molar flow rate of hydrogen can 

be achieved is 2500 kmol/hr at 1000 kg of catalyst. The temperature effect on hydrogen molar flow rate of hydrogen is shown 

in Figure 8b. From the result obtained, hydrogen flow rate started to increase at 600 C with the maximum flow rate of 1700 

kmol/hr. After that, the molar flow rate slightly decreases. Figure 8c illustrates the change of pressure in the reformer to hydrogen 

flow rate. From the results, it shows that the hydrogen flow rate increased rapidly when the pressure is increased from 1 bar to 

3 bar. After that, the flow rate of hydrogen remains unchanged although the pressure is increased from 3 bar to 30 bar. The 

reason the hydrogen produced is unchanged from the pressure 3 bar to 30 bar because the ethanol has totally reacted with steam 

and achieved maximum yield of hydrogen. To analyse the effect of steam to ethanol feed ratio, the steam flow rate is increased 

while maintaining the flow rate of ethanol. Figure 8d illustrates that increase of hydrogen productivity is evident with the 

increasing water feed. Ethanol conversion is increased to 45% when the steam to ethanol feeding ratio is 4. Therefore, the use 

of diluted ethanol is effective to improve hydrogen yield because to lower the impact of methanation and other side reaction 

such as acetaldehyde formation [9]. Overall, for ESR the reactor was simulated using 1000 kg of catalyst with operating 

temperature and pressure at 600 °C and 3 bar respectively and 4 steam to ethanol feed ratio. 
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Figure 7. The effect of molar ratio of steam to ethanol by Mathure et al [20] and Aspen Plus simulation. 

 

 

(a)      (b) 

 

(c)      (d) 

Figure 8. Sensitivity analysis of ESR. (a) Effect of catalyst weight effect on hydrogen molar flowrate (b) Effect of temperature 

on hydrogen molar flowrate (c) Effect of pressure on hydrogen molar flowrate (d) Effect of steam ratio feed on conversion of 

hydrogen 
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Figure 9 shows the experimental results by Amadeo & Laborde [24] for WGS reaction. Using the same reactor parameters by 

Amadeo & Laborde [24], the result from Aspen Plus simulation shows a good agreement with the experimental data. The highest 

error in this model was 21.70% at partial pressure of water at 0.30 x 10-5 Pa. For the lowest error was 2.75% at pressure of 0.15 

x 10-5 Pa. The mean error for this validation was 13.87%. For sensitivity analysis, Figure 10a shows the effect of catalyst weight 

to CO2 flow rate. The increment in catalyst weight causes the carbon dioxide flowrate to increase. The results show that at 50 

kg of catalyst produced 580 kmol/hr of carbon dioxide before became constant. Figure 10b shows the effect of reactor 

temperature. The increase in temperature causes a dropped in carbon dioxide molar flow rate. The hydrogen molar flow rate 

gradually decreased from zero C until 1000 C. The WGS is intrinsically an exothermic reaction. Based on Le Chatelier’s 

principle, equilibrium constant decreases with increase in temperature thus lower the conversion of carbon monoxide [31]. 

 

Figure 9. Partial pressure of water effect on conversion of carbon monoxide (left) Amadeo & Laborde [26] (right) Aspen Plus 

simulation 

 

Figure 10c shows the effect of reactor pressure. CO2 flow rate slightly increased when pressure is increased however the 

increment is small. The molar ratio of steam to carbon monoxide versus the carbon monoxide conversion to carbon dioxide is 

shown in Figure 10d. The result shows that, diluted carbon monoxide yields higher hydrogen and carbon dioxide flow rate. The 

maximum conversion was 25% at feed molar ratio of 4. The analysis results were in agreement with the work by Haarlemmer 

[32] which indicate that pressure play a minor role in the reaction and compare to steam ratio which significantly increase the 

CO conversion. WGS simulation involves two stage which is high temperature WGS (HWGS) and low temperature WGS 

(LWGS). Both stages were simulated using 50 kg of catalyst at 1 bar with operating temperature of 400 C for HWGS and 200 

C for LWGS while steam to CO feed ratio is four. For the separation process, the results of the simulated model and experimental 

data by Li et al. [30] are shown in Error! Reference source not found.4. Errors were less than 6% except for O2 in the GasOut 

stream with 14.37%. The mean error for this simulation was 2.53%.  
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(a)      (b) 

 

(c)      (d) 

Figure 10 Sensitivity analysis of WGS reaction. (a) Effect of catalyst weight on CO molar flowrate (b) Effect of 

temperature on CO molar flowrate (c) Effect of pressure on CO molar flowrate (d) Effect of ratio steam to ethanol on the 

conversion of carbon monoxide. 

 

Table 4. Comparison of Li et al. [30] and simulation results 

Stream Comp Li et al. (2016) Simulation Error 

GasOut N2 (kg/kg) 0.798 0.7973 0.08 

 O2 (kg/kg) 0.1085 0.0929 14.37 

 H2O (kg/kg) 0.0743 7.51E-02 1.07 

 CO2 (kg/kg) 0.0191 0.0191 0.15 

 F(kg/hr) 67.03 67.08 0.08 

CO2Out H2O 0.0043 4.32E-03 0.57 

 CO2 0.9943 0.9943 0 

 N2 0.0011 1.13E-03 3.13 

 O2 0.0003 2.82E-04 5.88 

 F (kg/hr) 4.86 4.86E+00 0.01 

 

3.2 Simulation Inventory Data 

The overall process flowsheets were simulated based on plant capacity of 627 kmol H2 /hr. Table 5 summarize the main 

inventory data per functional unit (FU) of 1 kg of hydrogen. In Case 1, for every kg of hydrogen produced requires 6.4 kg of 

steam and 2.04 kg of methane and produced 4.68 kg of carbon dioxide and 0.26 kg of carbon monoxide. In addition, the utilities 

required for heating and cool down the process gas is 6.81 MJ/FU of steam and 386.43 kg/FU of cooling water. In Case 2, for 

every 1 kg hydrogen, 5.9 kg of CO2 and 0.14 kg of CO were produced respectively. The cooling water consumed in this process 
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is 2145.65 kg and the net calorific value for the steam used is 50.02 MJ. The ethanol as feedstock used for produced 1 kg of 

hydrogen is 3.96 kg, meanwhile the steam consumed in the reaction between ethanol with steam is 8.79 kg.  

 

Table 5. Main inventory data for the Case 1 and Case 2 

Input Value Output Value 

Case 1 Case 2 Case 1 Case 2 

Iron (catalyst), kg 0.5 0.5 CO2, kg  4.7 5.9 
Nickel (catalyst), kg 0.13 0.24 CO, kg  0.3 0.1 

MEA, kg  14.8 27.4 Catalysts, kg 0.6 0.8 

Methane, kg 2.0 - Flue gas, kg 3.2 19.2 
Ethanol, kg - 4.0 H2, kg 1.0 1.0 

Nickel (catalyst), kg 0.13 0.24 MEA, kg  14.8 27.4 

Heating steam (MJ)  6.8 50.0 Waste water, kg 0.4 0.4 
Process steam, kg  6.4 8.8 Water for MEA 88.2 163.6 

Water for MEA 88.2 163.6 Cooling water, kg 1545.2 2145.7 

Cooling Water, kg 386.4 2145.7    

 

3.3 LCA Analysis 

The overall results for Case 1 is given in Figure 11 which shows the individual contribution of the impact category to each of 

the boundary analysis. Overall the most significant impact category is climate change with total of 9.44 kg CO2 eq. The most 

affected system boundaries with regards to climate change is SB2 with 4.68 kg CO2 eq and it cover 49.48% of the total impact. 

This is due to the MSR and WGS reactions that produced significant amount of carbon dioxide. This result is in agreement with 

the work by Galera and Ortiz [10] and Hajjaji et al. [33]. It is then followed by SB3 with 1.99 kg CO2 eq or 21.08%. SB3 is the 

process steam boundary in which fossil fuel is burned to generate the heating and process steams. SB5 and SB1 contribute the 

least with 1.48 kg CO2 eq and 1.29 kg CO2 eq respectively. Fossil depletion is the second most significant impact category with 

total of 4.044 kg oil eq. SB1 contributes the most with amount 2.694 kg oil eq or 66.62 %. This is expected since methane is a 

type of fossil fuel and used as a feedstock in the hydrogen production. It is then followed by SB3 with amount 0.845 kg oil eq 

or 20.90 %. In SB3, natural gas is used as raw material to generate heating steam used for heating. The third most significant 

impact category is water depletion with total of 4.01 kg m3 eq. SB1-5 contributed the most with amount of 3.81 m3 eq and 

covers 95.01% of the total water depletion impact. This is obvious since water is used as process water for the process steam 

generation and cooling water. It is then followed by SB1-3 with amount 0.03 m3 eq or 4.24%. The other impact categories have 

a value less than 1 kg eq.  

 

 
 

Figure 11. Environmental impact results for Case 1 
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Figure 12 shows the overall results for Case 2 which also indicate that climate change is the most dominant with total of 26.91 

kg CO2 eq. This value is almost three times higher than Case 1. Detail insight shows SB5 is the most affected system boundaries 

with regards to climate change with 8.1 kg CO2 eq and it cover 30.79% of total impact followed by SB3 with 7.9 kg CO2 eq or 

26.26% of the total impact. Both boundaries cover 57.05% of total climate impact. This is caused by large amount of fuel burned 

in the boiler to obtain the heating and process steams which in return released CO2. The second-high impact category is the 

water depletion with total of 25.51 m3 eq. SB5 contributes the most with amount 20.91 m3 eq. and cover 89.55%. This is 

expected since large amount of water was supplied into the process for process steam generation and cooling. However, the 

value is almost seven times higher compared to Case 1. The third most significant impact category is fossil depletion with total 

of 12.54% kg oil eq.  This value is lower than Case 1 due to the source for which Case 1 uses methane which is a form of fossil 

fuel. This is in consistent as SB1 contributed to the highest fossil fuel depletion with amount of 6.42 kg oil eq and covers 51.17% 

of the total impact. It is then followed by SB3 with 3.36 kg oil eq or 26.76%. Note that, the other impact categories that have a 

value less than 1 kg eq. These values exhibit minor environmental impact of the process. The reason is mainly due the nature of 

the process which mainly involve chemical processing and combustion. 

 

 
 

Figure 12. Environmental impact results for Case 2 

 

3.4 Economic Assessment 

The CAPEX results for both cases is shown in Table 6. For Case 1, the bare module cost, CBM, was estimated to be $4,282,327 

whereas Case 2 was $4,504,628. The total bare cost of Case 2 was 5.19 % higher than Case 1. Table 2 also compares the utilities 

consumption. The result shows that steam cost in the Case 1 is $ 12,461,000. Meanwhile, the steam cost for the Case 2 is 12.3% 

higher with total of $13,994,000. On the other hand, the cooling water cost for the Case 1 is $ 97,200 and for Case 2 is $ 171,200 

with difference of 76.13%. Overall, the total utilities cost for the Case 2 is higher compared to Case 1 with difference of 12.8%. 

The high utilities were used in case 2 because the heat duty required for heat transfer in heat exchanger in case 2 is high. In 

conclusion, overall Case 1 is more economic in the term capital and operating cost compared to the Case 2. 
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Table 6. The comparison of the CAPEX and OPEX between Case 1 and Case 2 

CAPEX Case 1 Case 2 Comparison (%) 

Bare module cost, CBM ($)    

- Heat exchangers 2,255,526.68 2,228,628.30  
- Reactors 1,250,000.00 1,250,000.00  

- Columns 776,800.00 1,026,000.00  

- Total 4,282,327 4,504,628 5.19 

OPEX     

Steam ($) 12,461,000 13,994,000  

Cooling water ($)  97,200 171,200  

Total ($) 12,558,200 14,165,200 12.8 

 

4.0 CONCLUSION 

The main highlights of this work is to assess and compare the environmental impact and economic feasibility of hydrogen 

production from methane (Case 1) and ethanol (Case 2). Both case studies were simulated in Aspen Plus 8.6 using a modified 

kinetic based reaction models for MSR and WGS reactions whereas RADFRAC model were used for CO2 separation. The 

modified reaction models and separation model shows good agreement with results found in literature. The flowsheets were 

then used for sensitivity analysis as well as environmental and economic assessment. Environmental analysis was performed in 

LCA GaBi software. It is found that three categories namely climate change, fossil depletion and water depletion were the most 

significant environmental impact compared to the other categories. Methane shows a higher impact on climate change whereas 

ethanol shows a higher fossil fuel resource depletion and water resources compared to methane. The economic assessment on 

the other hand, Case 1 were 5.2% and 12.8% less compared to ethanol in term of CAPEX and OPEX respectively. Overall, our 

findings show that methane (Case 1) is more environmental friendly and economically feasible than ethanol (Case 2) despite the 

latter uses a renewable source for hydrogen production. This study will help stake holders to understand the environmental and 

economic impacts of hydrogen production as such helping them to make viable decisions that could mitigate undesired impacts 

and ensure the sustainability to attract community, government and investor interest and support. 
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