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Abstract 

 

Presented in this study is a predictive approach to the maintenance of turbine rotors in thermal power plants. Using a 

supervised machine learning technique, a model that could predict future vibrations was developed onthe 

MATLABsimulation platform. Historical data on the vibration symptoms of the turbine-generator couple in a 

generating unit of a steam power plant were employed on the model to predict the future technical condition of the plant 

component after the model has already been trained with a portion of the turbine-generator section’s operational data. 

Distribution of the test values of the data about the lines of regression was obtained by quantitative analysis; likewise, 

the model’s ability to correctly predict items that were not used in the training process was also measured. Performance 

evaluation of the model sshows mean square error and mean absolute error of 0.000013691 and 0.0025, respectively at 

training; 0.000078253 and 0.0030, respectively at validation; as well as 0.0011 and0.0037 respectively at testing. Future 

maintenance needs of the turbine rotor can thus be determined by comparing predictions with the vibration safety 

threshold of the rotor. Operators of modern power plants can leverage the approach of this study to model and plan 

maintenance schemes that best suit individual units of power plants, rather than premising maintenance of plant 

components on the rule of thumb. 
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1.0 INTRODUCTION 

 

Utility-size electric power is conventionally generated from hydrocarbons, hydrodynamics, and radioactivity. While 

thermal power plants depend on hydrocarbon-rich fossil fuels for electricity generation, the inherent energy of dammed 

volume of water is converted to electric power by hydropower plants, and nuclear power plants depend on reactions 

from bombardments among radioisotope nuclei as the energy source for the generation of electricity. Steam power 

plants are designed for electric power generation, heat energy production for industrial purposes, and water 

desalinization for domestic uses.According to the 2013 World Energy Statistics, the annual generation of electricity 

from all sources was 22,126 TWh in 2011 with 68% of this being fossil-fueled [1]. The steam power plant is fossil- 

(coal, oil, or gas) based and runs through traditional and sophisticated technologies. A typical steam power plant 

comprises of boiler, turbine, generator, and other accessorial equipment; with the prime mover steam-driven. The boiler 

heats water to create steam at high temperature and pressure, then the turbine transforms the generated heat energy into 

mechanical energy as the turbine rotors are rotated by the steam to drive the electric generator that produces the 

electricity, and the steam condenses into a condenser that recycles the water for re-heating against process repeats 

[2]. Thus, the most critical and hazardous equipment in the plant is the turbine [3]. 

A major cause of the steam turbine fault is the failure of the turbine rotor blades. The convoluted-shaped rotor 

blades undergo severe dynamic and thermal loadings as they rotate at high speeds, interacting with the erosive 

environment [4]. These operating conditions expose blades to many vibration excitation mechanisms and make the 
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vibration measurement process of blades a highly complex task. Symptoms that are functions of vibrations are the most 

important for assessing the technical condition of rotating machines like the turbine rotor. The absolute vibration 

spectra, relative vibration vectors, and time evolution of spectral components are essential kinds of vibration symptoms 

for diagnosing the Steam turbine rotor [5]. Therefore, proper monitoring of the vibration of the steam turbine rotor is 

vital to maintain the efficient operation of any steam turbine power plant. 

There have been studies on the use of vibration symptoms for diagnostic assessment of the technical condition 

of rotating machines or components. Vibration signal analysis for rotating shafts and rolling element bearings that were 

placed under various load and operating conditions has been experimentally investigated [6]. Through a data logging 

device with an Ethernet connection to a computer, the study monitored, measured, and evaluated vibration signals 

processed in both time and frequency domains. Satisfactory results were obtained from the experimentation as the 

analysis of the vibrations enabled the prediction of the progress of fatigue failures in the components. In addition to 

time domain and frequency domain analysis methods, root mean square (RMS) analysis has also been employed in 

determining defects in ball bearings. In an experimental test conducted on six sets of bearings by [7],an FFT analyzer 

was used to measure vibration to show the baseline performance of a suitable bearing. The study revealed that the 

results of the experiment could be used to determine the type and size of bearing damage as the severity of vibration in 

defective bearings was indicated by the time domain analysis, while prediction of defects was made possible by the 

frequency domain analysis.    

The vibration analysis approach to the identification of potential progressing faults in components of power 

plants, other than the turbine, has been investigated. Authors in [8] examined upgrading the efficiency and the 

reliability of the Rankine cycle at a steam power plant through simulation in Aspen’s Hyprotech and Systems 

(HYSYS). Based on the outcome of the study, modification of the plant, depending on heat loss reduction from the 

condenser, was proposed. For a comparative analysis of steam gas-fired and combined-cycle power plants that were 

operated under different load conditions; exergy, combined pinch-exergy, and exergoeconomic methods were applied 

by in [9] using a simulator developed from the thermodynamic modeling of the plants that was designed to mimic the 

cycle behavior for diverse operating conditions with very minimal error. With the software model refined using data 

obtained from the plants’ performance tests, the exergy of the flows is calculated following the thermodynamic 

simulation. In [10], energy and exergy analysis of the regeneration Rankine cycle, covering fuel, furnace boiler, 

regenerative heat equipment, boiler drum, turbine, and condenser, was carried out. The study shows that while the 

whole plant has energy and exergy cycle efficiencies of 29.1% and 51.2% respectively, the turbine's energy and exergy 

efficiencies are 69% and 58%, respectively. Using TN8000 steam turbine vibration analysis software, [11], analyzed the 

vibration test signal of a 600 MW steam turbine unit of a power plant. Steam flow mechanism of excitation through 

vibration fault and fault-sensitive parameters were analyzed and measures for reducing unit vibration were proposed. It 

was found that the vibration caused by the vapor stream excitation occurs in the high-pressure rotor steam inlet end and 

was concluded that problems could be identified early. [12] enunciated extensively the losses in steam turbines that tend 

to decrease the efficiency and work output of a turbine. The turbine rotor is identified as one of the individual 

components whose inefficient functioning decimates the overall cycle inefficiency.  

Monitoring turbine conditions using vibration data has been a way of maintaining the turbine component of 

power plants. Authors in [13] adopted a strategic way of monitoring gas turbine engine conditions using vibration data, 

wherein wavelet transform implementation was examined to get features from vibration signals that describe the non-

stationary parts. The high dimensionality of the elements was addressed by compressing them using the kernel principal 

component analysis so that more meaningful lower-dimensional features could be used to train pattern recognition 

algorithms and, for feature discrimination, a novelty detection scheme that depends on one-class support vector 

machine (OCSVM) algorithm was selected for investigation. The developed strategy for condition monitoring was 

employed for detecting excessive vibration levels that could lead to engine component failure and its performance on 

vibration data from an experimental gas turbine engine operating under different conditions was demonstrated. 

Obtained results indicate that the detection scheme achieved satisfactory validation accuracy through the appropriate 

selection of parameters. 

Nowadays, predictive maintenance over corrective and preventive care is rising across the globe as it is 

becoming the most economically effective. However, predictive maintenance of critical machines with high unit cost 

and severe consequences of a potential failure, such as the steam power plant turbine, depends on reliable condition 

assessment procedures. The technical condition assessment of the steam turbines depends on specific, measurable 

physical properties that are sources of diagnostic symptoms [14]. [15] set up an intelligent monitoring system for 

predictive wind turbine monitoring, performance assessment, and fault diagnosis. The study adopted logistic regression 

(LR) in assessing the performance condition of the bearing; autoregressive moving average (ARMA) in predicting the 

bearing’s future variation trend; and in classifying and diagnosing the possible fault of the turbine bearing, support 

vector machine (SVM) was deployed. It was concluded that intelligent monitoring systems can achieve real-time 

vibration monitoring, current performance assessment, future performance trend prediction, and possible fault 

classification for wind turbine bearings. 

A study presented in [16] is on the diagnosis of rotary machine failures using machine learning (ML). 

Proposed in the study is the use of support vector machine (SVM) algorithm on experimental data gathered from a 

rotary machine model of a rigid-shaft rotor and flexible bearings, to proffer fault diagnosis of rotational unbalance in 
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the rotor of the machine. In a similar vein, the deployment of ML in power plant maintenance is beginning to take a 

foothold [17-20]. 

The turbine rotor is a highly essential component of the steam power plant. Failures of this component could 

be extremely exorbitant to fix or repair and possibly have huge consequential revenue losses if electricity is not 

generated. For an uninterrupted generation of power, therefore, safety assurance and improved reliability of turbines are 

necessary. In ensuring improved operations, preventive and corrective maintenance measures have been deployed. 

However, for better optimization of rotor performance, a shift from the conventional maintenance approach to an ML-

based predictive method is important. In this present study, therefore, a predictive approach that anchors on vibration 

levels monitoring and the use of ML is proposed for turbine rotor maintenance.The structuring of this paper is as 

follows: in the second section is presented the materials and method of the study, while the results obtained from the 

analyses of the experimental data are presented and discussed in the third section, and the conclusion drawn from the 

study is highlighted in the fourth section. 

 

 

2.0 METHODOLOGY 

 

Development, training, and performance validation of a steam turbine rotor vibration prediction modelis the main task 

of this study. Historical data on selected operational parameters of the steam power plant under study was collected and 

an ML model that can predict future parameters for turbine rotor vibration was developed on the simulation platform of 

MATLAB using a supervised ML technique (deep neural network). The ML technique was used to evaluate the model, 

which can be adapted for daily decision-making based on historical data of the turbine rotor vibration, and this was 

followed by an appraisal of the model's predictions with the actual values based on past operational logs. 

 

2.1 Description of the Case Study Power Plant 

 

Data for this study was obtained from Egbin Thermal Plant, which has an installed capacity of 1,320 MW. Located in 

the coastal area of the southwestern part of Nigeria, the power station is a gas-fired plant with six 220MW independent 

boiler-turbine units that can also run on high-power fuel oil (HPFO). Each of the units operates a closed system that is 

based on a reheat-regenerative Rankine cycle with high intermediate low-pressure impulse reaction turbine design and 

hydrogen-cooled generators where electric power is wheeled out at the cheapest rate within optimal levels of efficiency 

and global standards in health safety and environment (HSE) compliance [21].  

The choice of the plant for the study was premised on the fact that it is the largest power-generating station in 

Nigeria. Despite consistent and huge investments in its electric power industry [22-24], Nigeria has always wrestled 

with grid collapse at rapid sequences. More than 200 incidents of collapse have been recorded on the Nigerian national 

grid in the last nine years [25] and the failures keep counting [26, 27]. The crashes were due to a number of reasons, 

including rotor failures. According to [28], the relatively recent total crash of the grid on 24th March 2022 was due to 

the loss of the active generation plants one after the other due to rotor vibrations.Despite this menace, the Generation 

Companies (GenCos) in Nigeria do not encourage further investment along the path of boosting power plant capacities 

or licensing additional power generation businesses [27]. The option favoured by GenCos is giving attention to 

effective maintenance practices. Hence, the need to deploy ML in power-generating plant maintenance in the country.  

 

2.2 Experimental Design and Data Preparation  

 

The procedure of this study followed data gathering, data cleaning, data analysis, model development, and model 

validation. Two-hourly data on the operation processes of the steam turbine, covering from mid-day of 1st January 2021 

to 24th March 2021, was obtained from the plant. It must be noted that in the plant section under study, there are three 

different shafts: high/intermediate pressure turbine rotor shaft, low-pressure turbine rotor shaft, and generator rotor 

shaft; with the three coupled together to form one piece. Therefore, comprised in the obtained data are ten 

attributes/parameters of the coupling: generated active- and reactive powers, generator’s rotor- and stator temperatures, 

Bearing-1 and Bearing-2 (on high/intermediate pressure turbine rotor shaft) vibrations, Bearing-3 and Bearing-4 (on 

low-pressure turbine rotor shaft) vibrations, as well as Bearing-5 and Bering-6 (on generator rotor shaft) vibrations.The 

vibrations are measurements of the linear displacements of the shafts along the x-axis. As specific to the rotor under 

study here, the vibration data is recorded in millimeters and the vibration safety threshold of the turbine rotor is 0.25 mm 

(250 µm). 

Following the acquisition, the data was cleaned. The cleaning up (or filtering) was achieved using averaging 

principle method, where the above value and the value in between were added and divided. This was done to remove 

space in the acquired data. For the large data, correlative analysis was carried out to know the relationship between the 

examined parameters and other parameters of the plant with a 0.5 boundary limit. Each of the ten attributes has 988 

datapoints, but this study used 900. By convention, the data was split into a training dataset (70%) used to teach the 

created ML mode, a validation dataset (15%) used to qualify the performance of the model, and a test dataset (15%) 

used for the actual prediction. 
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2.3 Development of Deep Neural Network Model 

 

A code was created to perform all the activities of model development and validation. The model was developed using 

a deep neural network (DNN) with Levenberg-Marquardt algorithm. DNN describesartificial neural network (ANN) 

that has multiple hidden layers between the input and the output layers.  DNN easily extracts features of various levels 

of abstraction and so learns more complex patterns. 

 

2.3.1 Multi-layer perceptron (MLP) 

 

Of the major types of DNN: multi-layer perceptron (MLP), convolution neural network (CNN), and recurrent neural 

network (RNN); MLP is adopted in this study being the simplest kind of feed-forward ANN that generates a set of 

outputs from a set of inputs  [29, 30]. MLP is a fully connected multi-layer ANN that trains by learning the relationship 

between linear and non-linear data. It has several layers of input nodes connected as a directed graph between the input 

and output layers and applies back-propagation for training the network. It is a deep learning method that is used for 

supervised learning format. Neural Network (NN) is generally expressed as [29]: 

 

 𝑌 = 𝑋𝑇 .𝑊          (1) 

Where Y is the target/output, X is the input and W is the weight 

 

Figure 1 shows the topology of the DNN employed as the network model. The architecture has nine inputs, two hidden 

layers, and one output. Both the first and second hidden layers have fifteen neurons each, with tangent-hyperbolic as 

their activation function. Also, the output layer has purelin as its activation function. During training, the network error 

was optimized by setting the values of weight, w, and biased, b, via back-propagation. 

 

Figure 1. Developed DNN network topology 

 

The neural network model used in this study is a supervised learning technique, which has an input and a target 

for model development as shown in Figure 2(a). Nine of the attributes of the rotorwere the inputs; while a parameter, 

vibration 6, was the targetbecause it is the most severe vibration that quickly leads to rotor failure.After the model has 

been developed, it could be used for prediction using different inputs as shown in Figure 2(b). In this study, the 

predicted parameter is vibration 6. 

 

Weight Optimization 

 
Figure 2(a). Training process 

 

 

Weight Optimization 

 

 
Figure 2(b). Prediction process 

 

 

 



Titus O. Ajewole et. al./ JEST–Journal of Energy and Safety Technology. Vol.6, No.2 (2023): 01-09 

 

Page | 5 

2.3.2 MLP learning procedure 

 

MLP learning follows the following important procedures. 

 

Step 1:  Forward propagation – data propagation from the input layer to the output 

Step 2:  Error calculation based on the output – the difference between the predicted and known outcome 

Step 3:  Error back-propagation – obtain the derivative of the error, with respect to each weight in the 

network and update model 

Step 4:  Repeat steps 1-3 over multiple epochs to learn ideal weights 

Step 5:  Take the output via a threshold function to obtain the predicted class labels 

 

2.3.3 MLP forward propagation 

 

In the first step, calculate the activation unit 𝑎1(ℎ) of the hidden layer.  

 

𝑍1(ℎ) = 𝑎0(𝑖𝑛)𝑤0,1(ℎ) + 𝑎1(𝑖𝑛)𝑤1,1(ℎ) + ⋯+ 𝑎𝑖(𝑖𝑛)𝑤𝑘,1(ℎ)    (2) 

 

𝑎1(ℎ) = ∅(𝑍1(ℎ))         (3) 

 

The activation unit is the result of applying an activation function ∅ to the 𝑧 value. It must be differentiable to be able to 

learn weights using gradient descent. The activation function ∅ is often the sigmoid (logistic) function. 

 

∅(𝑧) =
1

1+𝑒−𝑧
          (4) 

 

It allows the nonlinearity needed to solve complex problems like image processing. 

The activation of the hidden layer is represented as: 

 

 𝑧(ℎ) = 𝑎(𝑖𝑛).𝑊(ℎ)         (5) 

 𝑎(ℎ) = 

 

For the output layer; 

 

 𝑍(𝑜𝑢𝑡) = 𝐴(ℎ).𝑊(𝑜𝑢𝑡)         (6) 

 𝐴(𝑜𝑢𝑡) = 

 

Where; 

 

𝑎𝑖(𝑖𝑛) is the ith value in the input layer 

𝑎𝑖(ℎ) is the ith unit in the hidden layer 

𝑎𝑖(𝑜𝑢𝑡) is the ith unit in the output layer 

𝑎0(𝑖𝑛) is the bias unit with the corresponding weight 𝑤0 

𝑤𝑘,𝑗(𝑖) is the weight coefficient from layer I to layer i+1 

 

2.4 Model Performance and Data Analysis 

 

In determining the model performance to predict the desired output, three statistical parameters: mean square error 

(MSE) and mean absolute error (MAE); were employed. The statistical parameters are expressed as [29, 30]: 

 

𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝑃𝑖)

2𝑛
𝑖=1

𝑛
         (7) 

 

 𝑀𝐴𝐸 =
∑ |(𝑂𝑖−𝑃𝑖)|
𝑛
𝑖=1

𝑛
         (8) 

 

Where n represents the number of data, 𝑂𝑖  stands for the observed values, and 𝑃𝑖  is the predicted value.  
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3.0 RESULTS AND DISCUSSION 

 

As shown in figure 3, the best validation performance of the neural network model is 
52.7877 10−  at epoch 10. This 

good validation value implied the model could be deployed for the proposed prediction.  

 

 

Figure 3. Best validation performance of the neural network model 

 

Regression analysis of the model is presented in figure 4 that comprises of four different charts: training, 

validation, test and all; with each having output plotted against target. Conventionally, the closer the target to the 

output, the better the regression plot. While the output represents the equation of a straight line, the coefficient of the 

target is the gradient and the constant value is the intercept on the output axis. The closer the target is to the output, the 

more the slope is to unity and the intercept is to zero, then the more the regression value approaches 1; and the better 

the regression plots.As obtained from the figure, the regression values for training, validation, test, and all are 0.99647, 

0.98148, 0.93149, and 0.98825, respectively. The figure is thus a good indication that the network performed well.  

 

 

 
Figure 4. Regression plots of the DNN  

 

The behaviour of the network during training is presented in Figure 5, which shows target data, output 

vibration, and errors. The training took a period of 3 s and the error-values are mostly around zero as the target data and 
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the output vibration are very close to each other. These indicate that the model did well during the training process. 

Figures 6 and 7, on the other hand, presents the performance of the model during validation and testing, respectively. 

The figures show that the errors are largely zero.  

 

 
Figure 5. Performance of the DNNmodel during training 

 

 

 
Figure 6. Performance of the DNNmodel during validation 

 

 
Figure 7. Performance of the DNNmodel during testing 

 

 The Prediction Model was evaluated for performance using mean square error (MSE) and mean absolute error 

(MAE). The values of the performance are shown in Table 1. The training performance values are usually more than the 

forecast evaluation because the result was exposed to the network during training. However, the result was not shown to 
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the model during prediction.  

 
Table 1. The training performance 

 MSE MAE 

Training 0.000013691 0.0025 

Validation 0.000078253 0.0030 

Prediction 0.0011 0.0037 

 

From the forecasted operating condition of the turbine rotor, the inevitability and timing of future failure can 

be determined beforehand by comparing the predictions with the vibration safety threshold of the turbine rotor, which is 

250 µm. 
 

 

4.0 CONCLUSION 

 

In ensuring better optimization of electric power plants, a paradigm shift in the plant maintenance culture has become 

inevitable. The need to change from the conventional approach to the machine learning-based predictive method in the 

maintenance of plant components has become important and thus a predictive approach that anchors on vibration levels 

monitoring is in this study proposed for turbine rotor maintenance. With historical operational data on rotor vibrations 

deployed on a machine-learning model, the future operating condition of the component was predicted. Inevitability and 

timing of failure are determined beforehand by comparing the predictions with the vibration safety threshold of the rotor.  

It is more economical to shut down the plant (or its component) for maintenance purposes than have it breakdown to 

call for repairs. Modern power plants with myriads of instrumentation and data acquisition mechanisms can 

leverage the approach of this study to model and plan the maintenance scheme that best suit s and fits individual 

units of the plant, rather than premising maintenance on the rule-of-thumb. 
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